Lehrstuhl für Theoretische Chemie


Deutsche Seite

Home
Research
- Marx group
- Hättig group
- Schäfer group
- Behler group
- Kutzelnigg group
- Staemmler group
Publications
Teaching
Media Gallery
Members
Hall of Fame
Openings
Colloquia
Intranet
Contact

Chemistry@RUB
ZEMOS@RUB
IMOS@RUB
Solvation@RUB
RD IFSC@RUB
RUB
Bochum Info
AGTC

PDF Version
This page as PDF-file for printing


Welcome to the Marx Group!


Scientific Interests of the Marx Group: A Short Overview

The general theme of our research consists in understanding structure, dynamics, and chemical reactions of complex molecular many-body systems - bridging the gap between chemistry and physics. Our aim is to capture nature as closely as possible by theoretical means - the basic entities being nuclei and electrons. This implies that we have to use atomistic ab initio computer simulation techniques which are capable of including dynamics and quantum mechanics - of course only approximatively. The notion "ab initio" or "first principles" means for us that we neither want to fit to experimental data nor do we want to adjust any parameters. The central working horse to turn these ideas into practical numerical tools are in particular the ab initio simulation methods going back to ideas of Car and Parrinello (1985).

The crucial idea of the Car-Parrinello approach to ab initio molecular dynamics consists in efficiently solving the electronic structure problem "on the fly" as the molecular dynamics trajectory is generated for a set of classical nuclei using Newtonian mechanics. Thus, within ab initio simulations it is neither required to compute a high-dimensional global potential energy surface prior to the simulation, nor is it necessary to reconstruct it approximately from local pair (or few-body) interactions.

This "classical" Car-Parrinello approach has been extended by Marx and Parrinello (1994) to include also the nuclei as quantum-mechanical degrees of freedom. In order to achieve this for "large systems" composed of the order of 100 nuclei or more, the Feynman-Kac formulation of quantum statistical mechanics in terms of path integrals is employed. This class of fully quantum-mechanical ab initio path integral techniques makes it possible to study - in a time-averaged sense - zero-point motion and tunneling effects for instance of protons in hydrogen-bonded or other complex environments.

More recently, another extension of the original Car-Parrinello method, which assumed the electrons to stay in the electronic ground state, was developed by Doltsinis and Marx (2002). The basic idea of this nonadiabatic ab initio dynamics technique is to use Tully's surface hopping algorithm in combination with the so-called restricted open-shell Kohn-Sham Ansatz. This efficient approach "beyond the Born-Oppenheimer approximation" allows us to study photochemical reactions with particular focus on laser-induced processes in solution.

We have developed a multi-determinant Car-Parrinello propagation scheme, which enables the description of the dynamics of electronic states that cannot be represented using a single Kohn-Sham determinant. Using this strategy, we have computed Heisenberg's antiferromagnetic exchange coupling obtained from a spin-projected, Hubbard-corrected, broken-symmetry ground state. Generating the time evolution of this quantity "on the fly" provides access to magnetostructural dynamics, which arise from the intricate coupling of molecular motion and magnetic properties.

A field pioneered in Bochum is the general theory and computer simulation of covalent mechanochemistry. In contrast to thermochemistry, photochemistry or electrochemistry (where temperature, light or electricity are used to trigger reactions), mechanochemistry utilises mechanical force to activate and control chemical reactions. Advances in this field impact on areas of application currently under investigation such as molecular nanomechanics of single-molecule junctions, functionalized surface coatings, and mechanoenzymes.

Among the most recent developments is a method that allows us to solvate molecular complexes in superfluid helium droplets at sub-Kelvin temperatures. It combines ab initio path integrals to treat chemically complex molecular solutes with a Monte Carlo sampling of the helium environment, in order to establish quantum mechanical indistinguishability - as required by the Bose-Einstein quantum statistics of liquid 4He. This approach opens the doorway to the study of chemical reactivity in the absence of thermal energy, such as aggregation-induced dissociation phenomena and cryochemical reactions.

The ever-growing family of ab initio simulation techniques is ideally suited to the investigation of disordered systems at finite temperatures; molecular liquids being a prime example of this. As such, this set of methods provides the most direct insight into the structure and dynamics of solvation shells, the impact of hydrogen bonding on the properties of aqueous solutions, and, most importantly, the influence of solvation on chemical reactivity.

These simulation algorithms together with the required computer hardware constitute what we like to call a "Virtual Laboratory". In this theoretician's version of a real laboratory chemical reactions of molecules can take place at finite temperature in liquids or on surfaces - solely governed by the basic laws of physics. This makes it possible to investigate "chemically complex" molecular systems - possibly in close contact with experimentalists. To foster this, the Marx Group is or has been involved in several large-scale collaborative research projects such as SFB 558 ("Heterogeneous Catalysis"), FOR 436 ("Water at Interfaces"), FOR 618 ("Molecular Aggregation") and various Projects of the Volkswagen-Stiftung ("Stress-Controlled Molecular Electronics", "Multiscale Modelling"). In particular, key research of the Marx Group is carried out in the framework of the Research Department "Interfacial Systems Chemistry" ( RD IFSC ) and the Research Consortium " Solvation Science@RUB " supplemented by the Koselleck Focus Group on " Covalent Mechanochemistry and Molecular Nanomechanics ".

Much more detail on this topic can be found in the monograph
"Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods"
written by Dominik Marx and Jürg Hutter
(Cambridge University Press, Cambridge 2009)

The research group itself consists (as a time average) of physicists, chemists, and biochemists and it is characterized by trans-disciplinarity. The spectral range of our interests is rather broad and covers applications to molecules, clusters, liquids, solids, surfaces, as well as to biologically relevant species. In order to be able to achieve these goals, we are constantly developing novel techniques and/or we are improving existing methods.

Some of our current and recent projects are:

If you want to know more about the various ab initio simulation techniques used and developed in the Marx group and applications of these methods we recommend to have a look at our local collection of books and review articles on the subject.

The publication lists of Dominik Marx and the Marx Group can be obtained as a pdf file (CV of Professor Marx). Note that it is illegal to download most of the articles listed there: please contact us at theochem@theochem.rub.de and you will receive legal reprints as soon as possible.


Impressum&Disclaimer   /   E-mail to the webmaster of this hompage: webmaster@theochem.ruhr-uni-bochum.de
Source File: index.wml (Tue Jan 24 13:45:45 2012) ($Revision: 1.53 $) Translated to HTML: Fri Feb 7 18:36:27 2014