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The rapidly growing field of ab initio molecular dynamics is reviewed in the spirit
of a series of lectures given at the Winterschool 2000 at the John von Neumann
Institute for Computing, Jülich. Several such molecular dynamics schemes are
compared which arise from following various approximations to the fully coupled
Schrödinger equation for electrons and nuclei. Special focus is given to the Car–
Parrinello method with discussion of both strengths and weaknesses in addition
to its range of applicability. To shed light upon why the Car–Parrinello approach
works several alternate perspectives of the underlying ideas are presented. The
implementation of ab initio molecular dynamics within the framework of plane
wave–pseudopotential density functional theory is given in detail, including diag-
onalization and minimization techniques as required for the Born–Oppenheimer
variant. Efficient algorithms for the most important computational kernel routines
are presented. The adaptation of these routines to distributed memory parallel
computers is discussed using the implementation within the computer code CPMD

as an example. Several advanced techniques from the field of molecular dynam-
ics, (constant temperature dynamics, constant pressure dynamics) and electronic
structure theory (free energy functional, excited states) are introduced. The com-
bination of the path integral method with ab initio molecular dynamics is presented
in detail, showing its limitations and possible extensions. Finally, a wide range of
applications from materials science to biochemistry is listed, which shows the enor-
mous potential of ab initio molecular dynamics for both explaining and predicting
properties of molecules and materials on an atomic scale.

1 Setting the Stage: Why Ab Initio Molecular Dynamics ?

Classical molecular dynamics using “predefined potentials”, either based on em-
pirical data or on independent electronic structure calculations, is well estab-
lished as a powerful tool to investigate many–body condensed matter systems.
The broadness, diversity, and level of sophistication of this technique is docu-
mented in several monographs as well as proceedings of conferences and scientific
schools 12,135,270,217,69,59,177. At the very heart of any molecular dynamics scheme
is the question of how to describe – that is in practice how to approximate – the
interatomic interactions. The traditional route followed in molecular dynamics is to
determine these potentials in advance. Typically, the full interaction is broken up
into two–body, three–body and many–body contributions, long–range and short–
range terms etc., which have to be represented by suitable functional forms, see
Sect. 2 of Ref. 253 for a detailed account. After decades of intense research, very
elaborate interaction models including the non–trivial aspect to represent them
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analytically were devised 253,539,584.
Despite overwhelming success – which will however not be praised in this re-

view – the need to devise a “fixed model potential” implies serious drawbacks, see
the introduction sections of several earlier reviews 513,472 for a more complete di-
gression on these aspects. Among the most delicate ones are systems where (i)
many different atom or molecule types give rise to a myriad of different interatomic
interactions that have to be parameterized and / or (ii) the electronic structure
and thus the bonding pattern changes qualitatively in the course of the simulation.
These systems can be called “chemically complex”.

The reign of traditional molecular dynamics and electronic structure methods
was greatly extended by the family of techniques that is called here “ab initio
molecular dynamics”. Other names that are currently in use are for instance Car–
Parrinello, Hellmann–Feynman, first principles, quantum chemical, on–the–fly, di-
rect, potential–free, quantum, etc. molecular dynamics. The basic idea underlying
every ab initio molecular dynamics method is to compute the forces acting on the
nuclei from electronic structure calculations that are performed “on–the–fly” as the
molecular dynamics trajectory is generated. In this way, the electronic variables are
not integrated out beforehand, but are considered as active degrees of freedom. This
implies that, given a suitable approximate solution of the many–electron problem,
also “chemically complex” systems can be handled by molecular dynamics. But
this also implies that the approximation is shifted from the level of selecting the
model potential to the level of selecting a particular approximation for solving the
Schrödinger equation.

Applications of ab initio molecular dynamics are particularly widespread in ma-
terials science and chemistry, where the aforementioned difficulties (i) and (ii) are
particularly severe. A collection of problems that were already tackled by ab initio
molecular dynamics including the pertinent references can be found in Sect. 5. The
power of this novel technique lead to an explosion of the activity in this field in terms
of the number of published papers. The locus can be located in the late–eighties,
see the squares in Fig. 1 that can be interpreted as a measure of the activity in
the area of ab initio molecular dynamics. As a matter of fact the time evolution of
the number of citations of a particular paper, the one by Car and Parrinello from
1985 entitled “Unified Approach for Molecular Dynamics and Density–Functional
Theory” 108, parallels the trend in the entire field, see the circles in Fig. 1. Thus,
the resonance that the Car and Parrinello paper evoked and the popularity of the
entire field go hand in hand in the last decade. Incidentally, the 1985 paper by Car
and Parrinello is the last one included in the section “Trends and Prospects” in
the reprint collection of “key papers” from the field of atomistic computer simula-
tions 135. That the entire field of ab initio molecular dynamics has grown mature
is also evidenced by a separate PACS classification number (71.15.Pd “Electronic
Structure: Molecular dynamics calculations (Car–Parrinello) and other numerical
simulations”) that was introduced in 1996 into the Physics and Astronomy Classi-
fication Scheme 486.

Despite its obvious advantages, it is evident that a price has to be payed for
putting molecular dynamics on ab initio grounds: the correlation lengths and re-
laxation times that are accessible are much smaller than what is affordable via
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Figure 1. Publication and citation analysis. Squares: number of publications which appeared
up to the year n that contain the keyword “ab initio molecular dynamics” (or synonyma such
as “first principles MD”, “Car–Parrinello simulations” etc.) in title, abstract or keyword list.
Circles: number of publications which appeared up to the year n that cite the 1985 paper by
Car and Parrinello 108 (including misspellings of the bibliographic reference). Self–citations and
self–papers are excluded, i.e. citations of Ref. 108 in their own papers and papers coauthored by
R. Car and / or M. Parrinello are not considered in the respective statistics. The analysis is based
on the CAPLUS (“Chemical Abstracts Plus”), INSPEC (“Physics Abstracts”), and SCI (“Science
Citation Index”) data bases at STN International. Updated statistics from Ref. 405 .

standard molecular dynamics. Another appealing feature of standard molecular
dynamics is less evident, namely the “experimental aspect of playing with the po-
tential”. Thus, tracing back the properties of a given system to a simple physical
picture or mechanism is much harder in ab initio molecular dynamics. The bright
side is that new phenomena, which were not forseen before starting the simulation,
can simply happen if necessary. This gives ab initio molecular dynamics a truly
predictive power.

Ab initio molecular dynamics can also be viewed from another corner, namely
from the field of classical trajectory calculations 649,541. In this approach, which
has its origin in gas phase molecular dynamics, a global potential energy surface
is constructed in a first step either empirically or based on electronic structure
calculations. In a second step, the dynamical evolution of the nuclei is generated
by using classical mechanics, quantum mechanics or semi / quasiclassical approx-
imations of various sorts. In the case of using classical mechanics to describe the
dynamics – the focus of the present overview – the limiting step for large systems is
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the first one, why so? There are 3N − 6 internal degrees of freedom that span the
global potential energy surface of an unconstrained N–body system. Using for sim-
plicity 10 discretization points per coordinate implies that of the order of 103N−6

electronic structure calculations are needed in order to map such a global potential
energy surface. Thus, the computational workload for the first step grows roughly
like ∼ 10N with increasing system size. This is what might be called the “dimen-
sionality bottleneck” of calculations that rely on global potential energy surfaces,
see for instance the discussion on p. 420 in Ref. 254.

What is needed in ab initio molecular dynamics instead? Suppose that a useful
trajectory consists of about 10M molecular dynamics steps, i.e. 10M electronic
structure calculations are needed to generate one trajectory. Furthermore, it is
assumed that 10n independent trajectories are necessary in order to average over
different initial conditions so that 10M+n ab initio molecular dynamics steps are
required in total. Finally, it is assumed that each single–point electronic structure
calculation needed to devise the global potential energy surface and one ab initio
molecular dynamics time step requires roughly the same amount of cpu time. Based
on this truly simplistic order of magnitude estimate, the advantage of ab initio
molecular dynamics vs. calculations relying on the computation of a global potential
energy surface amounts to about 103N−6−M−n. The crucial point is that for a given
statistical accuracy (that is for M and n fixed and independent on N ) and for a
given electronic structure method, the computational advantage of “on–the–fly”
approaches grows like ∼ 10N with system size.

Of course, considerable progress has been achieved in trajectory calculations by
carefully selecting the discretization points and reducing their number, choosing so-
phisticated representations and internal coordinates, exploiting symmetry etc. but
basically the scaling ∼ 10N with the number of nuclei remains a problem. Other
strategies consist for instance in reducing the number of active degrees of freedom
by constraining certain internal coordinates, representing less important ones by a
(harmonic) bath or friction, or building up the global potential energy surface in
terms of few–body fragments. All these approaches, however, invoke approxima-
tions beyond the ones of the electronic structure method itself. Finally, it is evident
that the computational advantage of the “on–the–fly” approaches diminish as more
and more trajectories are needed for a given (small) system. For instance extensive
averaging over many different initial conditions is required in order to calculate
quantitatively scattering or reactive cross sections. Summarizing this discussion,
it can be concluded that ab initio molecular dynamics is the method of choice to
investigate large and “chemically complex” systems.

Quite a few review articles dealing with ab initio molecular dynamics appeared
in the nineties 513,223,472,457,224,158,643,234,463,538,405 and the interested reader is re-
ferred to them for various complementary viewpoints. In the present overview
article, emphasis is put on both broadness of the approaches and depth of the pre-
sentation. Concerning the broadness, the discussion starts from the Schrödinger
equation. Classical, Ehrenfest, Born–Oppenheimer, and Car–Parrinello molecular
dynamics are “derived” from the time–dependent mean–field approach that is ob-
tained after separating the nuclear and electronic degrees of freedom. The most
extensive discussion is related to the features of the basic Car–Parrinello approach
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but all three ab initio approaches to molecular dynamics are contrasted and partly
compared. The important issue of how to obtain the correct forces in these schemes
is discussed in some depth. The most popular electronic structure theories imple-
mented within ab initio molecular dynamics, density functional theory in the first
place but also the Hartree–Fock approach, are sketched. Some attention is also
given to another important ingredient in ab initio molecular dynamics, the choice
of the basis set.

Concerning the depth, the focus of the present discussion is clearly the im-
plementation of both the basic Car–Parrinello and Born–Oppenheimer molecular
dynamics schemes in the CPMD package 142. The electronic structure approach
in CPMD is Hohenberg–Kohn–Sham density functional theory within a plane wave
/ pseudopotential implementation and the Generalized Gradient Approximation.
The formulae for energies, forces, stress, pseudopotentials, boundary conditions,
optimization procedures, parallelization etc. are given for this particular choice to
solve the electronic structure problem. One should, however, keep in mind that
a variety of other powerful ab initio molecular dynamics codes are available (for
instance CASTEP 116, CP-PAW 143, fhi98md 189, NWChem 446, VASP 663) which are
partly based on very similar techniques. The classic Car–Parrinello approach 108

is then extended to other ensembles than the microcanonical one, other electronic
states than the ground state, and to a fully quantum–mechanical representation of
the nuclei. Finally, the wealth of problems that can be addressed using ab initio
molecular dynamics is briefly sketched at the end, which also serves implicitly as
the “Summary and Conclusions” section.

2 Basic Techniques: Theory

2.1 Deriving Classical Molecular Dynamics

The starting point of the following discussion is non–relativistic quantum mechanics
as formalized via the time–dependent Schrödinger equation

i
� ∂
∂t

Φ({ri}, {RI}; t) = HΦ({ri}, {RI}; t) (1)

in its position representation in conjunction with the standard Hamiltonian

H = −
∑

I

� 2

2MI
∇2
I −

∑

i

� 2

2me
∇2
i +

∑

i<j

e2

|ri − rj|
−
∑

I,i

e2ZI
|RI − ri|

+
∑

I<J

e2ZIZJ
|RI −RJ |

= −
∑

I

� 2

2MI
∇2
I −

∑

i

� 2

2me
∇2
i + Vn−e({ri}, {RI})

= −
∑

I

� 2

2MI
∇2
I +He({ri}, {RI}) (2)

for the electronic {ri} and nuclear {RI} degrees of freedom. The more convenient
atomic units (a.u.) will be introduced at a later stage for reasons that will soon
become clear. Thus, only the bare electron–electron, electron–nuclear, and nuclear–
nuclear Coulomb interactions are taken into account.
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The goal of this section is to derive classical molecular dynamics 12,270,217

starting from Schrödinger’s wave equation and following the elegant route of
Tully 650,651. To this end, the nuclear and electronic contributions to the total
wavefunction Φ({ri}, {RI}; t), which depends on both the nuclear and electronic
coordinates, have to be separated. The simplest possible form is a product ansatz

Φ({ri}, {RI}; t) ≈ Ψ({ri}; t) χ({RI}; t) exp

[
i�
∫ t

t0

dt′Ẽe(t
′)

]
, (3)

where the nuclear and electronic wavefunctions are separately normalized to unity
at every instant of time, i.e. 〈χ; t|χ; t〉 = 1 and 〈Ψ; t|Ψ; t〉 = 1, respectively. In
addition, a convenient phase factor

Ẽe =

∫
drdR Ψ?({ri}; t) χ?({RI}; t)He Ψ({ri}; t) χ({RI}; t) (4)

was introduced at this stage such that the final equations will look nice;
∫
drdR

refers to the integration over all i = 1, . . . and I = 1, . . . variables {ri} and {RI},
respectively. It is mentioned in passing that this approximation is called a one–
determinant or single–configuration ansatz for the total wavefunction, which at the
end must lead to a mean–field description of the coupled dynamics. Note also that
this product ansatz (excluding the phase factor) differs from the Born–Oppenheimer
ansatz 340,350 for separating the fast and slow variables

ΦBO({ri}, {RI}; t) =
∞∑

k=0

Ψ̃k({ri}, {RI})χ̃k({RI}; t) (5)

even in its one–determinant limit, where only a single electronic state k (evaluated
for the nuclear configuration {RI}) is included in the expansion.

Inserting the separation ansatz Eq. (3) into Eqs. (1)–(2) yields (after multiplying
from the left by 〈Ψ| and 〈χ| and imposing energy conservation d 〈H〉 /dt ≡ 0) the
following relations

i
� ∂Ψ

∂t
= −

∑

i

� 2

2me
∇2
iΨ +

{∫
dR χ?({RI}; t)Vn−e({ri}, {RI})χ({RI}; t)

}
Ψ (6)

i
� ∂χ
∂t

= −
∑

I

� 2

2MI
∇2
Iχ+

{∫
dr Ψ?({ri}; t)He({ri}, {RI})Ψ({ri}; t)

}
χ . (7)

This set of coupled equations defines the basis of the time–dependent self–consistent
field (TDSCF) method introduced as early as 1930 by Dirac 162, see also Ref. 158.
Both electrons and nuclei move quantum–mechanically in time–dependent effective
potentials (or self–consistently obtained average fields) obtained from appropriate
averages (quantum mechanical expectation values 〈. . . 〉) over the other class of
degrees of freedom (by using the nuclear and electronic wavefunctions, respectively).
Thus, the single–determinant ansatz Eq. (3) produces, as already anticipated, a
mean–field description of the coupled nuclear–electronic quantum dynamics. This
is the price to pay for the simplest possible separation of electronic and nuclear
variables.
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The next step in the derivation of classical molecular dynamics is the task to
approximate the nuclei as classical point particles. How can this be achieved in the
framework of the TDSCF approach, given one quantum–mechanical wave equa-
tion describing all nuclei? A well–known route to extract classical mechanics from
quantum mechanics in general starts with rewriting the corresponding wavefunction

χ({RI}; t) = A({RI}; t) exp [iS({RI}; t)/ � ] (8)

in terms of an amplitude factor A and a phase S which are both considered to be
real and A > 0 in this polar representation, see for instance Refs. 163,425,535. After
transforming the nuclear wavefunction in Eq. (7) accordingly and after separating
the real and imaginary parts, the TDSCF equation for the nuclei

∂S

∂t
+
∑

I

1

2MI
(∇IS)

2
+

∫
dr Ψ?HeΨ = � 2

∑

I

1

2MI

∇2
IA

A
(9)

∂A

∂t
+
∑

I

1

MI
(∇IA) (∇IS) +

∑

I

1

2MI
A
(
∇2
IS
)

= 0 (10)

is (exactly) re–expressed in terms of the new variables A and S. This so–called
“quantum fluid dynamical representation” Eqs. (9)–(10) can actually be used to
solve the time–dependent Schrödinger equation 160. The relation for A, Eq. (10),
can be rewritten as a continuity equation 163,425,535 with the help of the identi-
fication of the nuclear density |χ|2 ≡ A2 as directly obtained from the definition
Eq. (8). This continuity equation is independent of � and ensures locally the con-
servation of the particle probability |χ|2 associated to the nuclei in the presence of
a flux.

More important for the present purpose is a more detailed discussion of the
relation for S, Eq. (9). This equation contains one term that depends on � , a
contribution that vanishes if the classical limit

∂S

∂t
+
∑

I

1

2MI
(∇IS)

2
+

∫
dr Ψ?HeΨ = 0 (11)

is taken as � → 0; an expansion in terms of � would lead to a hierarchy of semi-
classical methods 425,259. The resulting equation is now isomorphic to equations of
motion in the Hamilton–Jacobi formulation 244,540

∂S

∂t
+H ({RI}, {∇IS}) = 0 (12)

of classical mechanics with the classical Hamilton function

H({RI}, {PI}) = T ({PI}) + V ({RI}) (13)

defined in terms of (generalized) coordinates {RI} and their conjugate momenta
{PI}. With the help of the connecting transformation

PI ≡ ∇IS (14)
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the Newtonian equation of motion ṖI = −∇IV ({RI}) corresponding to Eq. (11)

dPI

dt
= −∇I

∫
dr Ψ?HeΨ or

MIR̈I(t) = −∇I
∫
dr Ψ?HeΨ (15)

= −∇IV E
e ({RI(t)}) (16)

can be read off. Thus, the nuclei move according to classical mechanics in an
effective potential V E

e due to the electrons. This potential is a function of only the
nuclear positions at time t as a result of averaging He over the electronic degrees
of freedom, i.e. computing its quantum expectation value 〈Ψ|He|Ψ〉, while keeping
the nuclear positions fixed at their instantaneous values {RI(t)}.

However, the nuclear wavefunction still occurs in the TDSCF equation for the
electronic degrees of freedom and has to be replaced by the positions of the nuclei for
consistency. In this case the classical reduction can be achieved simply by replacing
the nuclear density |χ({RI}; t)|2 in Eq. (6) in the limit � → 0 by a product of delta
functions

∏
I δ(RI −RI(t)) centered at the instantaneous positions {RI(t)} of the

classical nuclei as given by Eq. (15). This yields e.g. for the position operator
∫
dR χ?({RI}; t) RI χ({RI}; t)

� →0−→ RI(t) (17)

the required expectation value. This classical limit leads to a time–dependent wave
equation for the electrons

i � ∂Ψ

∂t
= −

∑

i

� 2

2me
∇2
iΨ + Vn−e({ri}, {RI(t)})Ψ

= He({ri}, {RI(t)}) Ψ({ri}, {RI}; t) (18)

which evolve self–consistently as the classical nuclei are propagated via Eq. (15).
Note that now He and thus Ψ depend parametrically on the classical nuclear posi-
tions {RI(t)} at time t through Vn−e({ri}, {RI(t)}). This means that feedback
between the classical and quantum degrees of freedom is incorporated in both
directions (at variance with the “classical path” or Mott non–SCF approach to
dynamics 650,651).

The approach relying on solving Eq. (15) together with Eq. (18) is sometimes
called “Ehrenfest molecular dynamics” in honor of Ehrenfest who was the first to
address the question a of how Newtonian classical dynamics can be derived from
Schrödinger’s wave equation 174. In the present case this leads to a hybrid or
mixed approach because only the nuclei are forced to behave like classical particles,
whereas the electrons are still treated as quantum objects.

Although the TDSCF approach underlying Ehrenfest molecular dynamics
clearly is a mean–field theory, transitions between electronic states are included

aThe opening statement of Ehrenfest’s famous 1927 paper 174 reads:
“Es ist wünschenswert, die folgende Frage möglichst elementar beantworten zu können: Welcher
Rückblick ergibt sich vom Standpunkt der Quantenmechanik auf die Newtonschen Grundgleichun-
gen der klassischen Mechanik?”
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in this scheme. This can be made evident by expanding the electronic wavefunc-
tion Ψ (as opposed to the total wavefunction Φ according to Eq. (5)) in terms of
many electronic states or determinants Ψk

Ψ({ri}, {RI}; t) =
∞∑

k=0

ck(t)Ψk({ri}; {RI}) (19)

with complex coefficients {ck(t)}. In this case, the coefficients {|ck(t)|2} (with∑
k |ck(t)|2 ≡ 1) describe explicitly the time evolution of the populations (occupa-

tions) of the different states {k} whereas interferences are included via the {c?kcl6=k}
contributions. One possible choice for the basis functions {Ψk} is the adiabatic basis
obtained from solving the time–independent electronic Schrödinger equation

He({ri}; {RI})Ψk = Ek({RI})Ψk({ri}; {RI}) , (20)

where {RI} are the instantaneous nuclear positions at time t according to Eq. (15).
The actual equations of motion in terms of the expansion coefficients {ck} are
presented in Sect. 2.2.

At this stage a further simplification can be invoked by restricting the total
electronic wave function Ψ to be the ground state wave function Ψ0 of He at each
instant of time according to Eq. (20) and |c0(t)|2 ≡ 1 in Eq. (19). This should be a
good approximation if the energy difference between Ψ0 and the first excited state
Ψ1 is everywhere large compared to the thermal energy kBT , roughly speaking. In
this limit the nuclei move according to Eq. (15) on a single potential energy surface

V E
e =

∫
dr Ψ?

0HeΨ0 ≡ E0({RI}) (21)

that can be computed by solving the time–independent electronic Schrödinger equa-
tion Eq. (20)

HeΨ0 = E0Ψ0 , (22)

for the ground state only. This leads to the identification V E
e ≡ E0 via Eq. (21),

i.e. in this limit the Ehrenfest potential is identical to the ground–state Born–
Oppenheimer potential.

As a consequence of this observation, it is conceivable to decouple the task of
generating the nuclear dynamics from the task of computing the potential energy
surface. In a first step E0 is computed for many nuclear configurations by solving
Eq. (22). In a second step, these data points are fitted to an analytical functional
form to yield a global potential energy surface 539, from which the gradients can be
obtained analytically. In a third step, the Newtonian equation of motion Eq. (16)
is solved on this surface for many different initial conditions, producing a “swarm”
of classical trajectories. This is, in a nutshell, the basis of classical trajectory cal-
culations on global potential energy surfaces 649,541.

As already alluded to in the general introduction, such approaches suffer severely
from the “dimensionality bottleneck” as the number of active nuclear degrees of
freedom increases. One traditional way out of this dilemma is to approximate the
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global potential energy surface

V E
e ≈ V approx

e ({RI}) =
N∑

I=1

v1(RI) +
N∑

I<J

v2(RI ,RJ)

+
N∑

I<J<K

v3(RI ,RJ ,RK) + · · · (23)

in terms of a truncated expansion of many–body contributions 253,12,270. At this
stage, the electronic degrees of freedom are replaced by interaction potentials {vn}
and are not featured as explicit degrees of freedom in the equations of motion. Thus,
the mixed quantum / classical problem is reduced to purely classical mechanics,
once the {vn} are determined. Classical molecular dynamics

MIR̈I(t) = −∇IV approx
e ({RI(t)}) (24)

relies crucially on this idea, where typically only two–body v2 or three–body v3

interactions are taken into account 12,270, although more sophisticated models to
include non–additive interactions such as polarization exist. This amounts to a
dramatic simplification and removes the dimensionality bottleneck as the global
potential surface is constructed from a manageable sum of additive few–body con-
tributions — at the price of introducing a drastic approximation and of basically
excluding chemical transformations from the realm of simulations.

As a result of this derivation, the essential assumptions underlying classical
molecular dynamics become transparent: the electrons follow adiabatically the clas-
sical nuclear motion and can be integrated out so that the nuclei evolve on a single
Born–Oppenheimer potential energy surface (typically but not necessarily given by
the electronic ground state), which is in general approximated in terms of few–body
interactions.

Actually, classical molecular dynamics for many–body systems is only made
possible by somehow decomposing the global potential energy. In order to illustrate
this point consider the simulation of N = 500 Argon atoms in the liquid phase 175

where the interactions can faithfully be described by additive two–body terms,
i.e. V approx

e ({RI}) ≈
∑N

I<J v2(|RI − RJ |). Thus, the determination of the pair
potential v2 from ab initio electronic structure calculations amounts to computing
and fitting a one–dimensional function. The corresponding task to determine a
global potential energy surface amounts to doing that in about 101500 dimensions,
which is simply impossible (and on top of that not necessary for Nobel gases!).

2.2 Ehrenfest Molecular Dynamics

A way out of the dimensionality bottleneck other than to approximate the global
potential energy surface Eq. (23) or to reduce the number of active degrees of free-
dom is to take seriously the classical nuclei approximation to the TDSCF equations,
Eq. (15) and (18). This amounts to computing the Ehrenfest force by actually solv-
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ing numerically

MIR̈I(t) = −∇I
∫
dr Ψ?HeΨ

= −∇I 〈Ψ |He|Ψ〉 (25)

= −∇I 〈He〉
= −∇IV E

e

i � ∂Ψ

∂t
=

[
−
∑

i

� 2

2me
∇2
i + Vn−e({ri}, {RI(t)})

]
Ψ

= HeΨ (26)

the coupled set of equations simultaneously. Thereby, the a priori construction
of any type of potential energy surface is avoided from the outset by solving the
time–dependent electronic Schrödinger equation “on–the–fly”. This allows one to
compute the force from ∇I〈He〉 for each configuration {RI(t)} generated by molec-
ular dynamics; see Sect. 2.5 for the issue of using the so–called “Hellmann–Feynman
forces” instead.

The corresponding equations of motion in terms of the adiabatic basis Eq. (20)
and the time–dependent expansion coefficients Eq. (19) read 650,651

MIR̈I(t) = −
∑

k

|ck(t)|2∇IEk −
∑

k,l

c?kcl (Ek −El) dklI (27)

i � ċk(t) = ck(t)Ek − i �
∑

I,l

cl(t)ṘId
kl
I , (28)

where the coupling terms are given by

dklI ({RI(t)}) =

∫
dr Ψ?

k∇IΨl (29)

with the property dkkI ≡ 0. The Ehrenfest approach is thus seen to include rigor-
ously non–adiabatic transitions between different electronic states Ψk and Ψl within
the framework of classical nuclear motion and the mean–field (TDSCF) approxi-
mation to the electronic structure, see e.g. Refs. 650,651 for reviews and for instance
Ref. 532 for an implementation in terms of time–dependent density functional the-
ory.

The restriction to one electronic state in the expansion Eq. (19), which is in
most cases the ground state Ψ0, leads to

MIR̈I(t) = −∇I 〈Ψ0 |He|Ψ0〉 (30)

i � ∂Ψ0

∂t
= HeΨ0 (31)

as a special case of Eqs. (25)–(26); note that He is time–dependent via the nuclear
coordinates {RI(t)}. A point worth mentioning here is that the propagation of the
wavefunction is unitary, i.e. the wavefunction preserves its norm and the set of
orbitals used to build up the wavefunction will stay orthonormal, see Sect. 2.6.
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Ehrenfest molecular dynamics is certainly the oldest approach to “on–the–fly”
molecular dynamics and is typically used for collision– and scattering–type prob-
lems 154,649,426,532. However, it was never in widespread use for systems with many
active degrees of freedom typical for condensed matter problems for reasons that
will be outlined in Sec. 2.6 (although a few exceptions exist 553,34,203,617 but here
the number of explicitly treated electrons is fairly limited with the exception of
Ref. 617).

2.3 Born–Oppenheimer Molecular Dynamics

An alternative approach to include the electronic structure in molecular dynamics
simulations consists in straightforwardly solving the static electronic structure prob-
lem in each molecular dynamics step given the set of fixed nuclear positions at that
instance of time. Thus, the electronic structure part is reduced to solving a time–
independent quantum problem, e.g. by solving the time–independent Schrödinger
equation, concurrently to propagating the nuclei via classical molecular dynamics.
Thus, the time–dependence of the electronic structure is a consequence of nuclear
motion, and not intrinsic as in Ehrenfest molecular dynamics. The resulting Born–
Oppenheimer molecular dynamics method is defined by

MIR̈I(t) = −∇I min
Ψ0

{〈Ψ0 |He|Ψ0〉} (32)

E0Ψ0 = HeΨ0 (33)

for the electronic ground state. A deep difference with respect to Ehrenfest dy-
namics concerning the nuclear equation of motion is that the minimum of 〈He〉
has to be reached in each Born–Oppenheimer molecular dynamics step according
to Eq. (32). In Ehrenfest dynamics, on the other hand, a wavefunction that min-
imized 〈He〉 initially will also stay in its respective minimum as the nuclei move
according to Eq. (30)!

A natural and straightforward extension 281 of ground–state Born–Oppenheimer
dynamics is to apply the same scheme to any excited electronic state Ψk without
considering any interferences. In particular, this means that also the “diagonal
correction terms” 340

Dkk
I ({RI(t)}) = −

∫
dr Ψ?

k∇2
IΨk (34)

are always neglected; the inclusion of such terms is discussed for instance in
Refs. 650,651. These terms renormalize the Born–Oppenheimer or “clamped nu-
clei” potential energy surface Ek of a given state Ψk (which might also be the
ground state Ψ0) and lead to the so–called “adiabatic potential energy surface”
of that state 340. Whence, Born–Oppenheimer molecular dynamics should not be
called “adiabatic molecular dynamics”, as is sometime done.

It is useful for the sake of later reference to formulate the Born–Oppenheimer
equations of motion for the special case of effective one–particle Hamiltonians. This
might be the Hartree–Fock approximation defined to be the variational minimum
of the energy expectation value 〈Ψ0 |He|Ψ0〉 given a single Slater determinant Ψ0 =
det{ψi} subject to the constraint that the one–particle orbitals ψi are orthonormal

12



〈ψi |ψj 〉 = δij . The corresponding constraint minimization of the total energy with
respect to the orbitals

min
{ψi}
{〈Ψ0 |He|Ψ0〉}

∣∣∣∣
{〈ψi|ψj 〉=δij}

(35)

can be cast into Lagrange’s formalism

L = −〈Ψ0 |He|Ψ0〉+
∑

i,j

Λij (〈ψi |ψj 〉 − δij) (36)

where Λij are the associated Lagrangian multipliers. Unconstrained variation of
this Lagrangian with respect to the orbitals

δL
δψ?i

!
= 0 (37)

leads to the well–known Hartree–Fock equations

HHF
e ψi =

∑

j

Λijψj (38)

as derived in standard text books 604,418; the diagonal canonical formHHF
e ψi = εiψi

is obtained after a unitary transformation and HHF
e denotes the effective one–

particle Hamiltonian, see Sect. 2.7 for more details. The equations of motion
corresponding to Eqs. (32)–(33) read

MIR̈I(t) = −∇I min
{ψi}

{〈
Ψ0

∣∣HHF
e

∣∣Ψ0

〉}
(39)

0 = −HHF
e ψi +

∑

j

Λijψj (40)

for the Hartree–Fock case. A similar set of equations is obtained if Hohenberg–
Kohn–Sham density functional theory 458,168 is used, where HHF

e has to be replaced
by the Kohn–Sham effective one–particle Hamiltonian HKS

e , see Sect. 2.7 for more
details. Instead of diagonalizing the one–particle Hamiltonian an alternative but
equivalent approach consists in directly performing the constraint minimization
according to Eq. (35) via nonlinear optimization techniques.

Early applications of Born–Oppenheimer molecular dynamics were performed
in the framework of a semiempirical approximation to the electronic structure prob-
lem 669,671. But only a few years later an ab initio approach was implemented within
the Hartree–Fock approximation 365. Born–Oppenheimer dynamics started to be-
come popular in the early nineties with the availability of more efficient electronic
structure codes in conjunction with sufficient computer power to solve “interesting
problems”, see for instance the compilation of such studies in Table 1 in a recent
overview article 82.

Undoubtedly, the breakthrough of Hohenberg–Kohn–Sham density functional
theory in the realm of chemistry – which took place around the same time – also
helped a lot by greatly improving the “price / performance ratio” of the electronic
structure part, see e.g. Refs. 694,590. A third and possibly the crucial reason that
boosted the field of ab initio molecular dynamics was the pioneering introduction of
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the Car–Parrinello approach 108, see also Fig. 1. This technique opened novel av-
enues to treat large–scale problems via ab initio molecular dynamics and catalyzed
the entire field by making “interesting calculations” possible, see also the closing
section on applications.

2.4 Car–Parrinello Molecular Dynamics

2.4.1 Motivation

A non–obvious approach to cut down the computational expenses of molecular dy-
namics which includes the electrons in a single state was proposed by Car and
Parrinello in 1985 108. In retrospect it can be considered to combine the advan-
tages of both Ehrenfest and Born–Oppenheimer molecular dynamics. In Ehrenfest
dynamics the time scale and thus the time step to integrate Eqs. (30) and (31)
simultaneously is dictated by the intrinsic dynamics of the electrons. Since elec-
tronic motion is much faster than nuclear motion, the largest possible time step
is that which allows to integrate the electronic equations of motion. Contrary
to that, there is no electron dynamics whatsoever involved in solving the Born–
Oppenheimer Eqs. (32)–(33), i.e. they can be integrated on the time scale given
by nuclear motion. However, this means that the electronic structure problem
has to be solved self–consistently at each molecular dynamics step, whereas this is
avoided in Ehrenfest dynamics due to the possibility to propagate the wavefunc-
tion by applying the Hamiltonian to an initial wavefunction (obtained e.g. by one
self–consistent diagonalization).

From an algorithmic point of view the main task achieved in ground–state
Ehrenfest dynamics is simply to keep the wavefunction automatically minimized
as the nuclei are propagated. This, however, might be achieved – in principle – by
another sort of deterministic dynamics than first–order Schrödinger dynamics. In
summary, the “Best of all Worlds Method” should (i) integrate the equations of
motion on the (long) time scale set by the nuclear motion but nevertheless (ii) take
intrinsically advantage of the smooth time–evolution of the dynamically evolving
electronic subsystem as much as possible. The second point allows to circumvent
explicit diagonalization or minimization to solve the electronic structure problem
for the next molecular dynamics step. Car–Parrinello molecular dynamics is an ef-
ficient method to satisfy requirement (ii) in a numerically stable fashion and makes
an acceptable compromise concerning the length of the time step (i).

2.4.2 Car–Parrinello Lagrangian and Equations of Motion

The basic idea of the Car–Parrinello approach can be viewed to exploit the
quantum–mechanical adiabatic time–scale separation of fast electronic and slow
nuclear motion by transforming that into classical–mechanical adiabatic energy–
scale separation in the framework of dynamical systems theory. In order to achieve
this goal the two–component quantum / classical problem is mapped onto a two–
component purely classical problem with two separate energy scales at the expense
of loosing the explicit time–dependence of the quantum subsystem dynamics. Fur-
thermore, the central quantity, the energy of the electronic subsystem 〈Ψ0|He|Ψ0〉
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evaluated with some wavefunction Ψ0, is certainly a function of the nuclear posi-
tions {RI}. But at the same time it can be considered to be a functional of the
wavefunction Ψ0 and thus of a set of one–particle orbitals {ψi} (or in general of
other functions such as two–particle geminals) used to build up this wavefunction
(being for instance a Slater determinant Ψ0 = det{ψi} or a combination thereof).
Now, in classical mechanics the force on the nuclei is obtained from the deriva-
tive of a Lagrangian with respect to the nuclear positions. This suggests that a
functional derivative with respect to the orbitals, which are interpreted as classical
fields, might yield the force on the orbitals, given a suitable Lagrangian. In addi-
tion, possible constraints within the set of orbitals have to be imposed, such as e.g.
orthonormality (or generalized orthonormality conditions that include an overlap
matrix).

Car and Parrinello postulated the following class of Lagrangians 108

LCP =
∑

I

1

2
MIṘ

2
I +

∑

i

1

2
µi
〈
ψ̇i

∣∣∣ψ̇i
〉

︸ ︷︷ ︸
kinetic energy

− 〈Ψ0|He|Ψ0〉︸ ︷︷ ︸
potential energy

+ constraints︸ ︷︷ ︸
orthonormality

(41)

to serve this purpose. The corresponding Newtonian equations of motion are ob-
tained from the associated Euler–Lagrange equations

d

dt

∂L
∂ṘI

=
∂L
∂RI

(42)

d

dt

δL
δψ̇?i

=
δL
δψ?i

(43)

like in classical mechanics, but here for both the nuclear positions and the orbitals;
note ψ?i = 〈ψi| and that the constraints are holonomic 244. Following this route of
ideas, generic Car–Parrinello equations of motion are found to be of the form

MIR̈I(t) = − ∂

∂RI
〈Ψ0|He|Ψ0〉+

∂

∂RI
{constraints} (44)

µiψ̈i(t) = − δ

δψ?i
〈Ψ0|He|Ψ0〉+

δ

δψ?i
{constraints} (45)

where µi (= µ) are the “fictitious masses” or inertia parameters assigned to the
orbital degrees of freedom; the units of the mass parameter µ are energy times a
squared time for reasons of dimensionality. Note that the constraints within the
total wavefunction lead to “constraint forces” in the equations of motion. Note also
that these constraints

constraints = constraints ({ψi}, {RI}) (46)

might be a function of both the set of orbitals {ψi} and the nuclear positions {RI}.
These dependencies have to be taken into account properly in deriving the Car–
Parrinello equations following from Eq. (41) using Eqs. (42)–(43), see Sect. 2.5 for
a general discussion and see e.g. Ref. 351 for a case with an additional dependence
of the wavefunction constraint on nuclear positions.
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According to the Car–Parrinello equations of motion, the nuclei evolve in time
at a certain (instantaneous) physical temperature ∝ ∑

IMIṘ
2
I , whereas a “fic-

titious temperature” ∝ ∑
i µi〈ψ̇i|ψ̇i〉 is associated to the electronic degrees of

freedom. In this terminology, “low electronic temperature” or “cold electrons”
means that the electronic subsystem is close to its instantaneous minimum energy
min{ψi}〈Ψ0|He|Ψ0〉, i.e. close to the exact Born–Oppenheimer surface. Thus, a
ground–state wavefunction optimized for the initial configuration of the nuclei will
stay close to its ground state also during time evolution if it is kept at a sufficiently
low temperature.

The remaining task is to separate in practice nuclear and electronic motion such
that the fast electronic subsystem stays cold also for long times but still follows
the slow nuclear motion adiabatically (or instantaneously). Simultaneously, the
nuclei are nevertheless kept at a much higher temperature. This can be achieved
in nonlinear classical dynamics via decoupling of the two subsystems and (quasi–)
adiabatic time evolution. This is possible if the power spectra stemming from
both dynamics do not have substantial overlap in the frequency domain so that
energy transfer from the “hot nuclei” to the “cold electrons” becomes practically
impossible on the relevant time scales. This amounts in other words to imposing and
maintaining a metastability condition in a complex dynamical system for sufficiently
long times. How and to which extend this is possible in practice was investigated in
detail in an important investigation based on well–controlled model systems 467,468

(see also Sects. 3.2 and 3.3 in Ref. 513), with more mathematical rigor in Ref. 86,
and in terms of a generalization to a second level of adiabaticity in Ref. 411.

2.4.3 Why Does the Car–Parrinello Method Work ?

In order to shed light on the title question, the dynamics generated by the Car–
Parrinello Lagrangian Eq. (41) is analyzed 467 in more detail invoking a “classical
dynamics perspective” of a simple model system (eight silicon atoms forming a
periodic diamond lattice, local density approximation to density functional theory,
normconserving pseudopotentials for core electrons, plane wave basis for valence
orbitals, 0.3 fs time step with µ = 300 a.u., in total 20 000 time steps or 6.3 ps),
for full details see Ref. 467); a concise presentation of similar ideas can be found
in Ref. 110. For this system the vibrational density of states or power spectrum
of the electronic degrees of freedom, i.e. the Fourier transform of the statistically
averaged velocity autocorrelation function of the classical fields

f(ω) =

∫ ∞

0

dt cos(ωt)
∑

i

〈
ψ̇i; t

∣∣∣ψ̇i; 0
〉

(47)

is compared to the highest–frequency phonon mode ωmax
n of the nuclear subsystem

in Fig. 2. From this figure it is evident that for the chosen parameters the nuclear
and electronic subsystems are dynamically separated: their power spectra do not
overlap so that energy transfer from the hot to the cold subsystem is expected to
be prohibitively slow, see Sect. 3.3 in Ref. 513 for a similar argument.

This is indeed the case as can be verified in Fig. 3 where the conserved energy
Econs, physical total energy Ephys, electronic energy Ve, and fictitious kinetic energy
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Figure 2. Vibrational density of states Eq. (47) (continuous spectrum in upper part) and harmonic
approximation thereof Eq. (52) (stick spectrum in lower part) of the electronic degrees of freedom
compared to the highest–frequency phonon mode ωmax

n (triangle) for a model system; for further
details see text. Adapted from Ref. 467.

of the electrons Te

Econs =
∑

i

1

2
µi
〈
ψ̇i

∣∣∣ψ̇i
〉

+
∑

I

1

2
MIṘ

2
I + 〈Ψ0|He|Ψ0〉 (48)

Ephys =
∑

I

1

2
MIṘ

2
I + 〈Ψ0|He|Ψ0〉 = Econs − Te (49)

Ve = 〈Ψ0|He|Ψ0〉 (50)

Te =
∑

i

1

2
µi
〈
ψ̇i

∣∣∣ψ̇i
〉

(51)

are shown for the same system as a function of time. First of all, there should be a
conserved energy quantity according to classical dynamics since the constraints are
holonomic 244. Indeed “the Hamiltonian” or conserved energy Econs is a constant of
motion (with relative variations smaller than 10−6 and with no drift), which serves
as an extremely sensitive check of the molecular dynamics algorithm. Contrary
to that the electronic energy Ve displays a simple oscillation pattern due to the
simplicity of the phonon modes.

Most importantly, the fictitious kinetic energy of the electrons Te is found to
perform bound oscillations around a constant, i.e. the electrons “do not heat up”
systematically in the presence of the hot nuclei; note that Te is a measure for devi-
ations from the exact Born–Oppenheimer surface. Closer inspection shows actually
two time scales of oscillations: the one visible in Fig. 3 stems from the drag exerted
by the moving nuclei on the electrons and is the mirror image of the Ve fluctuations.
Superimposed on top of that (not shown, but see Fig. 4(b)) are small–amplitude
high frequency oscillations intrinsic to the fictitious electron dynamics with a period
of only a fraction of the visible mode. These oscillations are actually instrumental
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Figure 3. Various energies Eqs. (48)–(51) for a model system propagated via Car–Parrinello molec-
ular dynamics for at short (up to 300 fs), intermediate, and long times (up to 6.3 ps); for further
details see text. Adapted from Ref. 467.

for the stability of the Car–Parrinello dynamics, vide infra. But already the visible
variations are three orders of magnitude smaller than the physically meaningful os-
cillations of Ve. As a result, Ephys defined as Econs− Te or equivalently as the sum
of the nuclear kinetic energy and the electronic total energy (which serves as the
potential energy for the nuclei) is essentially constant on the relevant energy and
time scales. Thus, it behaves approximately like the strictly conserved total energy
in classical molecular dynamics (with only nuclei as dynamical degrees of freedom)
or in Born–Oppenheimer molecular dynamics (with fully optimized electronic de-
grees of freedom) and is therefore often denoted as the “physical total energy”.
This implies that the resulting physically significant dynamics of the nuclei yields
an excellent approximation to microcanonical dynamics (and assuming ergodicity
to the microcanonical ensemble). Note that a different explanation was advocated
in Ref. 470 (see also Ref. 472, in particular Sect. VIII.B and C), which was however
revised in Ref. 110. A discussion similar in spirit to the one outlined here 467 is
provided in Ref. 513, see in particular Sect. 3.2 and 3.3.

Given the adiabatic separation and the stability of the propagation, the central
question remains if the forces acting on the nuclei are actually the “correct” ones
in Car–Parrinello molecular dynamics. As a reference serve the forces obtained
from full self–consistent minimizations of the electronic energy min{ψi}〈Ψ0|He|Ψ0〉
at each time step, i.e. Born–Oppenheimer molecular dynamics with extremely well
converged wavefunctions. This is indeed the case as demonstrated in Fig. 4(a):
the physically meaningful dynamics of the x–component of the force acting on one
silicon atom in the model system obtained from stable Car–Parrinello fictitious
dynamics propagation of the electrons and from iterative minimizations of the elec-
tronic energy are extremely close.

Better resolution of one oscillation period in (b) reveals that the gross devia-
tions are also oscillatory but that they are four orders of magnitudes smaller than
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Figure 4. (a) Comparison of the x–component of the force acting on one atom of a model system
obtained from Car–Parrinello (solid line) and well–converged Born–Oppenheimer (dots) molecular
dynamics. (b) Enlarged view of the difference between Car–Parrinello and Born–Oppenheimer
forces; for further details see text. Adapted from Ref. 467 .

the physical variations of the force resolved in Fig. 4(a). These correspond to the
“large–amplitude” oscillations of Te visible in Fig. 3 due to the drag of the nuclei
exerted on the quasi–adiabatically following electrons having a finite dynamical
mass µ. Note that the inertia of the electrons also dampens artificially the nuclear
motion (typically on a few–percent scale, see Sect. V.C.2 in Ref. 75 for an anal-
ysis and a renormalization correction of MI) but decreases as the fictitious mass
approaches the adiabatic limit µ→ 0. Superimposed on the gross variation in (b)
are again high–frequency bound oscillatory small–amplitude fluctuations like for Te.
They lead on physically relevant time scales (i.e. those visible in Fig. 4(a)) to “av-
eraged forces” that are very close to the exact ground–state Born–Oppenheimer
forces. This feature is an important ingredient in the derivation of adiabatic dy-
namics 467,411.

In conclusion, the Car–Parrinello force can be said to deviate at most instants of
time from the exact Born–Oppenheimer force. However, this does not disturb the
physical time evolution due to (i) the smallness and boundedness of this difference
and (ii) the intrinsic averaging effect of small–amplitude high–frequency oscillations
within a few molecular dynamics time steps, i.e. on the sub–femtosecond time scale
which is irrelevant for nuclear dynamics.

2.4.4 How to Control Adiabaticity ?

An important question is under which circumstances the adiabatic separation can
be achieved, and how it can be controlled. A simple harmonic analysis of the
frequency spectrum of the orbital classical fields close to the minimum defining the
ground state yields 467

ωij =

(
2(εi − εj)

µ

)1/2

, (52)
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where εj and εi are the eigenvalues of occupied and unoccupied orbitals, respec-
tively; see Eq. (26) in Ref. 467 for the case where both orbitals are occupied ones.
It can be seen from Fig. 2 that the harmonic approximation works faithfully as
compared to the exact spectrum; see Ref. 471 and Sect. IV.A in Ref. 472 for a more
general analysis of the associated equations of motion. Since this is in particu-
lar true for the lowest frequency ωmin

e , the handy analytic estimate for the lowest
possible electronic frequency

ωmin
e ∝

(
Egap

µ

)1/2

, (53)

shows that this frequency increases like the square root of the electronic energy
difference Egap between the lowest unoccupied and the highest occupied orbital.
On the other hand it increases similarly for a decreasing fictitious mass parameter
µ.

In order to guarantee the adiabatic separation, the frequency difference ωmin
e −

ωmax
n should be large, see Sect. 3.3 in Ref. 513 for a similar argument. But both

the highest phonon frequency ωmax
n and the energy gap Egap are quantities that a

dictated by the physics of the system. Whence, the only parameter in our hands
to control adiabatic separation is the fictitious mass, which is therefore also called
“adiabaticity parameter”. However, decreasing µ not only shifts the electronic
spectrum upwards on the frequency scale, but also stretches the entire frequency
spectrum according to Eq. (52). This leads to an increase of the maximum frequency
according to

ωmax
e ∝

(
Ecut

µ

)1/2

, (54)

where Ecut is the largest kinetic energy in an expansion of the wavefunction in
terms of a plane wave basis set, see Sect. 3.1.3.

At this place a limitation to decrease µ arbitrarily kicks in due to the maximum
length of the molecular dynamics time step ∆tmax that can be used. The time step
is inversely proportional to the highest frequency in the system, which is ωmax

e and
thus the relation

∆tmax ∝
(

µ

Ecut

)1/2

(55)

governs the largest time step that is possible. As a consequence, Car–Parrinello
simulators have to find their way between Scylla and Charybdis and have to make
a compromise on the control parameter µ; typical values for large–gap systems are
µ = 500–1500 a.u. together with a time step of about 5–10 a.u. (0.12–0.24 fs).
Recently, an algorithm was devised that optimizes µ during a particular simulation
given a fixed accuracy criterion 87. Note that a poor man’s way to keep the time
step large and still increase µ in order to satisfy adiabaticity is to choose heavier
nuclear masses. That depresses the largest phonon or vibrational frequency ωmax

n

of the nuclei (at the cost of renormalizing all dynamical quantities in the sense of
classical isotope effects).
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Up to this point the entire discussion of the stability and adiabaticity issues
was based on model systems, approximate and mostly qualitative in nature. But
recently it was actually proven 86 that the deviation or the absolute error ∆µ of the
Car–Parrinello trajectory relative to the trajectory obtained on the exact Born–
Oppenheimer potential energy surface is controlled by µ:
Theorem 1 iv.): There are constants C > 0 and µ? > 0 such that

∆µ =
∣∣Rµ(t)−R0(t)

∣∣ +
∣∣|ψµ; t 〉 −

∣∣ψ0; t
〉∣∣ ≤ Cµ1/2 , 0 ≤ t ≤ T (56)

and the fictitious kinetic energy satisfies

Te =
1

2
µ
〈
ψ̇µ; t

∣∣∣ψ̇µ; t
〉
≤ Cµ , 0 ≤ t ≤ T (57)

for all values of the parameter µ satisfying 0 < µ ≤ µ?, where up to time T > 0
there exists a unique nuclear trajectory on the exact Born–Oppenheimer surface
with ωmin

e > 0 for 0 ≤ t ≤ T , i.e. there is “always” a finite electronic excitation
gap. Here, the superscript µ or 0 indicates that the trajectory was obtained via
Car–Parrinello molecular dynamics using a finite mass µ or via dynamics on the
exact Born–Oppenheimer surface, respectively. Note that not only the nuclear
trajectory is shown to be close to the correct one, but also the wavefunction is
proven to stay close to the fully converged one up to time T . Furthermore, it
was also investigated what happens if the initial wavefunction at t = 0 is not the
minimum of the electronic energy 〈He〉 but trapped in an excited state. In this case
it is found that the propagated wavefunction will keep on oscillating at t > 0 also
for µ→ 0 and not even time averages converge to any of the eigenstates. Note that
this does not preclude Car–Parrinello molecular dynamics in excited states, which is
possible given a properly “minimizable” expression for the electronic energy, see e.g.
Refs. 281,214. However, this finding might have crucial implications for electronic
level–crossing situations.

What happens if the electronic gap is very small or even vanishes Egap → 0
as is the case for metallic systems? In this limit, all the above–given arguments
break down due to the occurrence of zero–frequency electronic modes in the power
spectrum according to Eq. (53), which necessarily overlap with the phonon spec-
trum. Following an idea of Sprik 583 applied in a classical context it was shown
that the coupling of separate Nosé–Hoover thermostats 12,270,217 to the nuclear and
electronic subsystem can maintain adiabaticity by counterbalancing the energy flow
from ions to electrons so that the electrons stay “cool” 74; see Ref. 204 for a simi-
lar idea to restore adiabaticity. Although this method is demonstrated to work in
practice 464, this ad hoc cure is not entirely satisfactory from both a theoretical and
practical point of view so that the well–controlled Born–Oppenheimer approach is
recommended for strongly metallic systems. An additional advantage for metal-
lic systems is that the latter is also better suited to sample many k–points (see
Sect. 3.1.3), allows easily for fractional occupation numbers 458,168, and can handle
efficiently the so–called charge sloshing problem 472.
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2.4.5 The Quantum Chemistry Viewpoint

In order to understand Car–Parrinello molecular dynamics also from the “quantum
chemistry perspective”, it is useful to formulate it for the special case of the Hartree–
Fock approximation using

LCP =
∑

I

1

2
MIṘ

2
I +

∑

i

1

2
µi
〈
ψ̇i

∣∣∣ψ̇i
〉

−
〈
Ψ0|HHF

e |Ψ0

〉
+
∑

i,j

Λij (〈ψi |ψj 〉 − δij) . (58)

The resulting equations of motion

MIR̈I(t) = −∇I
〈
Ψ0

∣∣HHF
e

∣∣Ψ0

〉
(59)

µiψ̈i(t) = −HHF
e ψi +

∑

j

Λijψj (60)

are very close to those obtained for Born–Oppenheimer molecular dynamics
Eqs. (39)–(40) except for (i) no need to minimize the electronic total energy ex-
pression and (ii) featuring the additional fictitious kinetic energy term associated
to the orbital degrees of freedom. It is suggestive to argue that both sets of equa-
tions become identical if the term |µiψ̈i(t)| is small at any time t compared to the
physically relevant forces on the right–hand–side of both Eq. (59) and Eq. (60).
This term being zero (or small) means that one is at (or close to) the minimum of
the electronic energy 〈Ψ0|HHF

e |Ψ0〉 since time derivatives of the orbitals {ψi} can
be considered as variations of Ψ0 and thus of the expectation value 〈HHF

e 〉 itself.
In other words, no forces act on the wavefunction if µiψ̈i ≡ 0. In conclusion, the
Car–Parrinello equations are expected to produce the correct dynamics and thus
physical trajectories in the microcanonical ensemble in this idealized limit. But
if |µiψ̈i(t)| is small for all i, this also implies that the associated kinetic energy
Te =

∑
i µi〈ψ̇i|ψ̇i〉/2 is small, which connects these more qualitative arguments

with the previous discussion 467.
At this stage, it is also interesting to compare the structure of the Lagrangian

Eq. (58) and the Euler–Lagrange equation Eq. (43) for Car–Parrinello dynamics to
the analogues equations (36) and (37), respectively, used to derive “Hartree–Fock
statics”. The former reduce to the latter if the dynamical aspect and the associated
time evolution is neglected, that is in the limit that the nuclear and electronic
momenta are absent or constant. Thus, the Car–Parrinello ansatz, namely Eq. (41)
together with Eqs. (42)–(43), can also be viewed as a prescription to derive a new
class of “dynamical ab initio methods” in very general terms.

2.4.6 The Simulated Annealing and Optimization Viewpoints

In the discussion given above, Car–Parrinello molecular dynamics was motivated
by “combining” the positive features of both Ehrenfest and Born–Oppenheimer
molecular dynamics as much as possible. Looked at from another side, the Car–
Parrinello method can also be considered as an ingenious way to perform global
optimizations (minimizations) of nonlinear functions, here 〈Ψ0|He|Ψ0〉, in a high–
dimensional parameter space including complicated constraints. The optimization
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parameters are those used to represent the total wavefunction Ψ0 in terms of simpler
functions, for instance expansion coefficients of the orbitals in terms of Gaussians
or plane waves, see e.g. Refs. 583,375,693,608 for applications of the same idea in
other fields.

Keeping the nuclei frozen for a moment, one could start this optimization pro-
cedure from a “random wavefunction” which certainly does not minimize the elec-
tronic energy. Thus, its fictitious kinetic energy is high, the electronic degrees of
freedom are “hot”. This energy, however, can be extracted from the system by
systematically cooling it to lower and lower temperatures. This can be achieved
in an elegant way by adding a non–conservative damping term to the electronic
Car–Parrinello equation of motion Eq. (45)

µiψ̈i(t) = − δ

δψ?i
〈Ψ0|He|Ψ0〉 +

δ

δψ?i
{constraints} − γeµiψi , (61)

where γe ≥ 0 is a friction constant that governs the rate of energy dissipation 610;
alternatively, dissipation can be enforced in a discrete fashion by reducing the veloc-
ities by multiplying them with a constant factor < 1. Note that this deterministic
and dynamical method is very similar in spirit to simulated annealing 332 invented
in the framework of the stochastic Monte Carlo approach in the canonical ensemble.
If the energy dissipation is done slowly, the wavefunction will find its way down to
the minimum of the energy. At the end, an intricate global optimization has been
performed!

If the nuclei are allowed to move according to Eq. (44) in the presence of an-
other damping term a combined or simultaneous optimization of both electrons
and nuclei can be achieved, which amounts to a “global geometry optimization”.
This perspective is stressed in more detail in the review Ref. 223 and an imple-
mentation of such ideas within the CADPAC quantum chemistry code is described in
Ref. 692. This operational mode of Car–Parrinello molecular dynamics is related to
other optimization techniques where it is aimed to optimize simultaneously both the
structure of the nuclear skeleton and the electronic structure. This is achieved by
considering the nuclear coordinates and the expansion coefficients of the orbitals as
variation parameters on the same footing 49,290,608. But Car–Parrinello molecular
dynamics is more than that because even if the nuclei continuously move according
to Newtonian dynamics at finite temperature an initially optimized wavefunction
will stay optimal along the nuclear trajectory.

2.4.7 The Extended Lagrangian Viewpoint

There is still another way to look at the Car–Parrinello method, namely in the
light of so–called “extended Lagrangians” or “extended system dynamics” 14, see
e.g. Refs. 136,12,270,585,217 for introductions. The basic idea is to couple additional
degrees of freedom to the Lagrangian of interest, thereby “extending” it by increas-
ing the dimensionality of phase space. These degrees of freedom are treated like
classical particle coordinates, i.e. they are in general characterized by “positions”,
“momenta”, “masses”, “interactions” and a “coupling term” to the particle’s po-
sitions and momenta. In order to distinguish them from the physical degrees of
freedom, they are often called “fictitious degrees of freedom”.
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The corresponding equations of motion follow from the Euler–Lagrange equa-
tions and yield a microcanonical ensemble in the extended phase space where the
Hamiltonian of the extended system is strictly conserved. In other words, the
Hamiltonian of the physical (sub–) system is no more (strictly) conserved, and the
produced ensemble is no more the microcanonical one. Any extended system dy-
namics is constructed such that time–averages taken in that part of phase space that
is associated to the physical degrees of freedom (obtained from a partial trace over
the fictitious degrees of freedom) are physically meaningful. Of course, dynamics
and thermodynamics of the system are affected by adding fictitious degrees of free-
dom, the classic examples being temperature and pressure control by thermostats
and barostats, see Sect. 4.2.

In the case of Car–Parrinello molecular dynamics, the basic Lagrangian for
Newtonian dynamics of the nuclei is actually extended by classical fields {ψi(r)},
i.e. functions instead of coordinates, which represent the quantum wavefunction.
Thus, vector products or absolute values have to be generalized to scalar products
and norms of the fields. In addition, the “positions” of these fields {ψi} actually
have a physical meaning, contrary to their momenta {ψ̇i}.

2.5 What about Hellmann–Feynman Forces ?

An important ingredient in all dynamics methods is the efficient calculation of the
forces acting on the nuclei, see Eqs. (30), (32), and (44). The straightforward
numerical evaluation of the derivative

FI = −∇I 〈Ψ0|He|Ψ0〉 (62)

in terms of a finite–difference approximation of the total electronic energy is both
too costly and too inaccurate for dynamical simulations. What happens if the gra-
dients are evaluated analytically? In addition to the derivative of the Hamiltonian
itself

∇I 〈Ψ0|He|Ψ0〉 = 〈Ψ0|∇IHe|Ψ0〉
+ 〈∇IΨ0|He|Ψ0〉+ 〈Ψ0|He|∇IΨ0〉 (63)

there are in general also contributions from variations of the wavefunction ∼ ∇IΨ0.
In general means here that these contributions vanish exactly

FHFT
I = −〈Ψ0|∇IHe|Ψ0〉 (64)

if the wavefunction is an exact eigenfunction (or stationary state wavefunction) of
the particular Hamiltonian under consideration. This is the content of the often–
cited Hellmann–Feynman Theorem 295,186,368, which is also valid for many varia-
tional wavefunctions (e.g. the Hartree–Fock wavefunction) provided that complete
basis sets are used. If this is not the case, which has to be assumed for numerical
calculations, the additional terms have to be evaluated explicitly.

In order to proceed a Slater determinant Ψ0 = det{ψi} of one–particle orbitals
ψi, which themselves are expanded

ψi =
∑

ν

ciν fν(r; {RI}) (65)
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stressed that the energy conservation seen in Fig. 5(top) is routinely achieved in
Car–Parrinello molecular dynamics simulations.

2.7 Electronic Structure Methods

2.7.1 Introduction

Up to this point, the electronic structure method to calculate the ab initio forces
∇I〈Ψ|He|Ψ〉 was not specified in detail. It is immediately clear that ab initio
molecular dynamics is not tied to any particular approach, although very accu-
rate techniques are of course prohibitively expensive. It is also evident that the
strength or weakness of a particular ab initio molecular dynamics scheme is inti-
mately connected to the strength or weakness of the chosen electronic structure
method. Over the years a variety of different approaches such as density func-
tional 108,679,35,472,343,36, Hartree–Fock 365,254,191,379,281,284,316,293, generalized va-
lence bond (GVB) 282,283,228,229,230, complete active space SCF (CASSCF) 566,567,
full configuration interaction (FCI) 372, semiempirical 669,671,91,?,114,666,280 or other
approximate 473,454,551,455,170,171,26 methods were combined with molecular dynam-
ics, and this list is certainly incomplete.

The focus of the present review clearly is Car–Parrinello molecular dynamics
in conjunction with Hohenberg–Kohn–Sham density functional theory 301,338. In
the following, only those parts of density functional theory are presented that im-
pact directly on ab initio molecular dynamics. For a deeper presentation and in
particular for a discussion of the assumptions and limitations of this approach
(both conceptually and in practice) the reader is referred to the existing excellent
literature 591,320,458,168. For simplicity, the formulae are presented for the spin–
unpolarized or restricted special case.

Following the exposition of density functional theory, the fundamentals of
Hartree–Fock theory, which is often considered to be the basis of quantum chem-
istry, are introduced for the same special case. Finally, a glimpse is given at post
Hartree–Fock methods. Again, an extensive text–book literature exists for these
wavefunction–based approaches to electronic structure calculations 604,418. The
very useful connection between the density–based and wavefunction–based meth-
ods goes back to Löwdin’s work in the mid fifties and is e.g. worked out in Chapt. 2.5
of Ref. 458, where Hartree–Fock theory is formulated in density–matrix language.

2.7.2 Density Functional Theory

The total ground–state energy of the interacting system of electrons with classical
nuclei fixed at positions {RI} can be obtained

min
Ψ0

{〈Ψ0 |He|Ψ0〉} = min
{φi}

EKS[{φi}]

as the minimum of the Kohn–Sham energy 301,338

EKS[{φi}] = Ts[{φi}] +

∫
dr Vext(r) n(r) +

1

2

∫
dr VH(r) n(r) +Exc[n] ,(75)
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which is an explicit functional of the set of auxiliary functions {φi(r)} that sat-
isfy the orthonormality relation 〈φi | φj〉 = δij. This is a dramatic simplification
since the minimization with respect to all possible many–body wavefunctions {Ψ} is
replaced by a minimization with respect to a set of orthonormal one–particle func-
tions, the Kohn–Sham orbitals {φi}. The associated electronic one–body density
or charge density

n(r) =
occ∑

i

fi | φi(r) |2 (76)

is obtained from a single Slater determinant built from the occupied orbitals, where
{fi} are integer occupation numbers.

The first term in the Kohn–Sham functional Eq. (75) is the kinetic energy of a
non–interacting reference system

Ts[{φi}] =
occ∑

i

fi

〈
φi

∣∣∣∣−
1

2
∇2

∣∣∣∣φi
〉

(77)

consisting of the same number of electrons exposed to the same external potential
as in the fully interacting system. The second term comes from the fixed external
potential

Vext(r) = −
∑

I

ZI
|RI − r| +

∑

I<J

ZIZJ
|RI −RJ |

(78)

in which the electrons move, which comprises the Coulomb interactions between
electrons and nuclei and in the definition used here also the internuclear Coulomb
interactions; this term changes in the first place if core electrons are replaced by
pseudopotentials, see Sect. 3.1.5 for further details. The third term is the Hartree
energy, i.e. the classical electrostatic energy of two charge clouds which stem from
the electronic density and is obtained from the Hartree potential

VH(r) =

∫
dr′

n(r′)
| r− r′ | , (79)

which in turn is related to the density via

∇2VH(r) = −4πn(r) (80)

Poisson’s equation. The last contribution in the Kohn–Sham functional, the
exchange–correlation functional Exc[n], is the most intricate contribution to the
total electronic energy. The electronic exchange and correlation effects are lumped
together and basically define this functional as the remainder between the exact
energy and its Kohn–Sham decomposition in terms of the three previous contribu-
tions.

The minimum of the Kohn–Sham functional is obtained by varying the energy
functional Eq. (75) for a fixed number of electrons with respect to the density
Eq. (76) or with respect to the orbitals subject to the orthonormality constraint,
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see e.g. the discussion following Eq. (35) for a similar variational procedure. This
leads to the Kohn–Sham equations

{
−1

2
∇2 + Vext(r) + VH(r) +

δExc[n]

δn(r)

}
φi(r) =

∑

j

Λijφj(r) (81)

{
−1

2
∇2 + V KS(r)

}
φi(r) =

∑

j

Λijφj(r) (82)

HKS
e φi(r) =

∑

j

Λijφj(r) , (83)

which are one–electron equations involving an effective one–particle Hamiltonian
HKS

e with the local potential V KS. Note that HKS
e nevertheless embodies the elec-

tronic many–body effects by virtue of the exchange–correlation potential

δExc[n]

δn(r)
= Vxc(r) . (84)

A unitary transformation within the space of the occupied orbitals leads to the
canonical form

HKS
e φi = εiφi (85)

of the Kohn–Sham equations, where {εi} are the eigenvalues. In conventional static
density functional or “band structure” calculations this set of equations has to be
solved self–consistently in order to yield the density, the orbitals and the Kohn–
Sham potential for the electronic ground state 487. The corresponding total energy
Eq. (75) can be written as

EKS =
∑

i

εi −
1

2

∫
dr VH(r) n(r) + Exc[n]−

∫
dr

δExc[n]

δn(r)
n(r) , (86)

where the sum over Kohn–Sham eigenvalues is the so–called “band–structure en-
ergy”.

Thus, Eqs. (81)–(83) together with Eqs. (39)–(40) define Born–Oppenheimer
molecular dynamics within Kohn–Sham density functional theory, see e.g.
Refs. 232,616,594,35,679,472,36,343,344 for such implementations. The functional deriva-
tive of the Kohn–Sham functional with respect to the orbitals, the Kohn–Sham
force acting on the orbitals, can be expressed as

δEKS

δφ?i
= fiH

KS
e φi , (87)

which makes clear the connection to Car–Parrinello molecular dynamics, see
Eq. (45). Thus, Eqs. (59)–(60) have to be solved with the effective one–particle
Hamiltonian in the Kohn–Sham formulation Eqs. (81)–(83). In the case of Ehren-
fest dynamics presented in Sect. 2.2, which will not be discussed in further detail
at this stage, the Runge–Gross time–dependent generalization of density functional
theory 258 has to be invoked instead, see e.g. Refs. 203,617,532.

Crucial to any application of density functional theory is the approximation of
the unknown exchange and correlation functional. A discussion focussed on the
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utilization of such functionals in the framework of ab initio molecular dynamics
is for instance given in Ref. 588. Those exchange–correlation functionals that will
be considered in the implementation part, Sect. 3.3, belong to the class of the
“Generalized Gradient Approximation”

EGGA
xc [n] =

∫
dr n(r) εGGA

xc (n(r);∇n(r)) , (88)

where the unknown functional is approximated by an integral over a function that
depends only on the density and its gradient at a given point in space, see Ref. 477

and references therein. The combined exchange–correlation function is typically
split up into two additive terms εx and εc for exchange and correlation, respectively.
In the simplest case it is the exchange and correlation energy density εLDA

xc (n) of an
interacting but homogeneous electron gas at the density given by the “local” density
n(r) at space–point r in the inhomogeneous system. This simple but astonishingly
powerful approximation 320 is the famous local density approximation LDA 338

(or local spin density LSD in the spin–polarized case 40), and a host of different
parameterizations exist in the literature 458,168. The self–interaction correction 475

SIC as applied to LDA was critically assessed for molecules in Ref. 240 with a
disappointing outcome.

A significant improvement of the accuracy was achieved by introducing the gra-
dient of the density as indicated in Eq. (88) beyond the well–known straightforward
gradient expansions. These so–called GGAs (also denoted as “gradient corrected”
or “semilocal” functionals) extended the applicability of density functional calcula-
tion to the realm of chemistry, see e.g. Refs. 476,42,362,477,478,479 for a few “popular
functionals” and Refs. 318,176,577,322 for extensive tests on molecules, complexes,
and solids, respectively.

Another considerable advance was the successful introduction of “hybrid func-
tionals” 43,44 that include to some extent “exact exchange” 249 in addition to a
standard GGA. Although such functionals can certainly be implemented within a
plane wave approach 262,128, they are prohibitively time–consuming as outlined at
the end of Sect. 3.3. A more promising route in this respect are those function-
als that include higher–order powers of the gradient (or the local kinetic energy
density) in the sense of a generalized gradient expansion beyond the first term.
Promising results could be achieved by including Laplacian or local kinetic energy
terms 493,192,194,662, but at this stage a sound judgment concerning their “prize /
performance ratio” has to await further scrutinizing tests. The “optimized poten-
tial method” (OPM) or “optimized effective potentials” (OEP) are another route
to include “exact exchange” within density functional theory, see e.g. Sect. 13.6
in Ref. 588 or Ref. 251 for overviews. Here, the exchange–correlation functional
EOPM

xc = Exc[{φi}] depends on the individual orbitals instead of only on the den-
sity or its derivatives.

2.7.3 Hartree–Fock Theory

Hartree–Fock theory is derived by invoking the variational principle in a restricted
space of wavefunctions. The antisymmetric ground–state electronic wavefunction
is approximated by a single Slater determinant Ψ0 = det{ψi} which is constructed

36



from a set of one–particle spin orbitals {ψi} required to be mutually orthonormal
〈ψi |ψj 〉 = δij. The corresponding variational minimum of the total electronic
energy He defined in Eq. (2)

EHF[{ψi}] =
∑

i

∫
drψ?i (r)

[
−1

2
∇2 + Vext(r)

]
ψi(r)

+
1

2

∑

ij

∫ ∫
dr dr′ ψ?i (r)ψ?j (r′)

1

|r− r′| ψi(r)ψj(r
′)

+
1

2

∑

ij

∫ ∫
dr dr′ ψ?i (r)ψ?j (r′)

1

|r− r′| ψj(r)ψi(r
′) (89)

yields the lowest energy and the “best” wavefunction within a one–determinant
ansatz; the external Coulomb potential Vext was already defined in Eq. (78). Car-
rying out the constraint minimization within this ansatz (see Eq. (36) in Sect. 2.3
for a sketch) leads to



−

1

2
∇2 + Vext(r) +

∑

j

Jj(r)−
∑

j

Kj(r)



ψi(r) =

∑

j

Λijψj(r) (90)

{
−1

2
∇2 + V HF(r)

}
ψi(r) =

∑

j

Λijψj(r) (91)

HHF
e ψi(r) =

∑

j

Λijψj(r) (92)

the Hartree–Fock integro–differential equations. In analogy to the Kohn–Sham
equations Eqs. (81)–(83) these are effective one–particle equations that involve an
effective one–particle Hamiltonian HHF

e , the (Hartree–) Fock operator. The set of
canonical orbitals

HHF
e ψi = εiψi (93)

is obtained similarly to Eq. (85). The Coulomb operator

Jj(r) ψi(r) =

[∫
dr′ ψ?j (r

′)
1

|r− r′|ψj(r
′)

]
ψi(r) (94)

and the exchange operator

Kj(r) ψi(r) =

[∫
dr′ ψ?j (r′)

1

|r− r′|ψi(r
′)

]
ψj(r) (95)

are most easily defined via their action on a particular orbital ψi. It is found
that upon acting on orbital ψi(r) the exchange operator for the j–th state “ex-
changes” ψj(r

′) → ψi(r
′) in the kernel as well as replaces ψi(r) → ψj(r) in its

argument, compare to the Coulomb operator. Thus, K is a non–local operator as
its action on a function ψi at point r in space requires the evaluation and thus the
knowledge of that function throughout all space by virtue of

∫
dr′ ψi(r′) . . . the

required integration. In this sense the exchange operator does not possess a simple
classical interpretation like the Coulomb operator C, which is the counterpart of
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the Hartree potential VH in Kohn–Sham theory. The exchange operator vanishes
exactly if the antisymmetrization requirement of the wavefunction is relaxed, i.e.
only the Coulomb contribution survives if a Hartree product is used to represent
the wavefunction.

The force acting on the orbitals is defined

δEHF

δψ?i
= HHF

e ψi (96)

similarly to Eq. (87). At this stage, the various ab initio molecular dynamics
schemes based on Hartree–Fock theory are defined, see Eqs. (39)–(40) for Born–
Oppenheimer molecular dynamics and Eqs. (59)–(60) for Car–Parrinello molecu-
lar dynamics. In the case of Ehrenfest molecular dynamics the time–dependent
Hartree–Fock formalism 162 has to be invoked instead.

2.7.4 Post Hartree–Fock Theories

Although post Hartree–Fock methods have a very unfavorable scaling of the compu-
tational cost as the number of electrons increases, a few case studies were performed
with such correlated quantum chemistry techniques. For instance ab initio molec-
ular dynamics was combined with GVB 282,283,228,229,230, CASSCF 566,567, as well
as FCI 372 approaches, see also references therein. It is noted in passing that Car–
Parrinello molecular dynamics can only be implemented straightforwardly if energy
and wavefunction are “consistent”. This is not the case in perturbation theories
such as e.g. the widely used Møller–Plesset approach 292: within standard MP2
the energy is correct to second order, whereas the wavefunction is the one given by
the uncorrelated HF reference. As a result, the derivative of the MP2 energy with
respect to the wavefunction Eq. (96) does not yield the correct force on the HF
wavefunction in the sense of fictitious dynamics. Such problems are of course ab-
sent from the Born–Oppenheimer approach to sample configuration space, see e.g.
Ref. 328,317,33 for MP2, density functional, and multireference CI ab initio Monte
Carlo schemes.

It should be kept in mind that the rapidly growing workload of post HF calcu-
lations, although extremely powerful in principle, limits the number of explicitely
treated electrons to only a few. The rapid development of correlated electronic
structure methods that scale linearly with the number of electrons will certainly
broaden the range of applicability of this class of techniques in the near future.

2.8 Basis Sets

2.8.1 Gaussians and Slater Functions

Having selected a specific electronic structure method the next choice is related
to which basis set to use in order to represent the orbitals ψi in terms of simple
analytic functions fν with well–known properties. In general a linear combination
of such basis functions

ψi(r) =
∑

ν

ciνfν(r; {RI}) (97)
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is used, which represents exactly any reasonable function in the limit of using a
complete set of basis functions. In quantum chemistry, Slater–type basis functions
(STOs)

fS
m(r) = NS

m rmxx rmyy rmzz exp [−ζm|r|] (98)

with an exponentially decaying radial part and Gaussian–type basis functions
(GTOs)

fG
m(r) = NG

m rmxx rmyy rmzz exp
[
−αmr

2
]

(99)

have received widespread use, see e.g. Ref. 292 for a concise overview–type presen-
tation. Here, Nm, ζm and αm are constants that are typically kept fixed during
a molecular electronic structure calculation so that only the orbital expansion co-
efficients ciν need to be optimized. In addition, fixed linear combinations of the
above–given “primitive” basis functions can be used for a given angular momentum
channel m, which defines the “contracted” basis sets.

The Slater or Gaussian basis functions are in general centered at the positions of
the nuclei, i.e. r→ r−RI in Eq. (98)–(99), which leads to the linear combination
of atomic orbitals (LCAO) ansatz to solve differential equations algebraically. Fur-
thermore, their derivatives as well as the resulting matrix elements are efficiently
obtained by differentiation and integration in real–space. However, Pulay forces
(see Sect. 2.5) will result for such basis functions that are fixed at atoms (or bonds)
if the atoms are allowed to move, either in geometry optimization or molecular
dynamics schemes. This disadvantage can be circumvented by using freely floating
Gaussians that are distributed in space 582, which form an originless basis set since
it is localized but not atom–fixed.

2.8.2 Plane Waves

A vastly different approach has its roots in solid–state theory. Here, the ubiquitous
periodicity of the underlying lattice produces a periodic potential and thus imposes
the same periodicity on the density (implying Bloch’s Theorem, Born–von Karman
periodic boundary conditions etc., see e.g. Chapt. 8 in Ref. 27). This heavily
suggests to use plane waves as the generic basis set in order to expand the periodic
part of the orbitals, see Sect. 3.1.2. Plane waves are defined as

fPW
G (r) = N exp [iGr] , (100)

where the normalization is simply given by N = 1/
√

Ω; Ω is the volume of the
periodic (super–) cell. Since plane waves form a complete and orthonormal set of
functions they can be used to expand orbitals according to Eq. (97), where the
labeling ν is simply given by the vector G in reciprocal space / G–space (including
only those G–vectors that satisfy the particular periodic boundary conditions). The
total electronic energy is found to have a particularly simple form when expressed
in plane waves 312.

It is important to observe that plane waves are originless functions, i.e. they
do not depend on the positions of the nuclei {RI}. This implies that the Pulay
forces Eq. (67) vanish exactly even within a finite basis (and using a fixed number
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of plane waves, see the discussion related to “Pulay stress” in Sect. 2.5), which
tremendously facilitates force calculations. This also implies that plane waves are
a very unbiased basis set in that they are “delocalized” in space and do not “favor”
certain atoms or regions over others, i.e. they can be considered as an ultimately
“balanced basis set” in the language of quantum chemistry. Thus, the only way
to improve the quality of the basis is to increase the “energy cutoff” Ecut, i.e. to
increase the largest |G|–vector that is included in the finite expansion Eq. (97).
This blind approach is vastly different from the traditional procedures in quantum
chemistry that are needed in order to produce reliable basis sets 292. Another
appealing feature is that derivatives in real–space are simply multiplications in G–
space, and both spaces can be efficiently connected via Fast Fourier Transforms
(FFTs). Thus, one can easily evaluate operators in that space in which they are
diagonal, see for instance the flow charts in Fig. 6 or Fig. 7.

According to the well–known “No Free Lunch Theorem” there cannot be only
advantages connected to using plane waves. The first point is that the pseudopoten-
tial approximation is intimately connected to using plane waves, why so? A plane
wave basis is basically a lattice–symmetry–adapted three–dimensional Fourier de-
composition of the orbitals. This means that increasingly large Fourier components
are needed in order to resolve structures in real space on decreasingly small distance
scales. But already orbitals of first row atoms feature quite strong and rapid oscilla-
tions close to the nuclei due to the Pauli principle, which enforces a nodal structure
onto the wavefunction by imposing orthogonality of the orbitals. However, most
of chemistry is ruled by the valence electrons, whereas the core electrons are es-
sentially inert. In practice, this means that the innermost electrons can be taken
out of explicit calculations. Instead they are represented by a smooth and nodeless
effective potential, the so–called pseudopotential 296,297,484,485,139, see for instance
Refs. 487,578,221 for reviews in the context of “solid state theory” and Refs. 145,166 for
pseudopotentials as used in “quantum chemistry”. The resulting pseudo wavefunc-
tion is made as smooth as possible close to the nuclear core region. This also means
that properties that depend crucially on the wavefunction close to the core cannot
be obtained straightforwardly from such calculations. In the field of plane wave
calculations the introduction of “soft” norm–conserving ab initio pseudopotentials
was a breakthrough both conceptually 274 and in practice 28. Another important
contribution, especially for transition metals, was the introduction of the so–called
ultrasoft pseudopotentials by Vanderbilt 661. This approaches lead to the power-
ful technique of plane wave–pseudopotential electronic structure calculations in the
framework of density functional theory 312,487. Within this particular framework
the issue of pseudopotentials is elaborated in more detail in Sect. 3.1.5.

Another severe shortcoming of plane waves is the backside of the medal of being
an unbiased basis set: there is no way to shuffle more basis functions into regions in
space where they are more needed than in other regions. This is particularly bad for
systems with strong inhomogeneities. Such examples are all–electron calculations
or the inclusion of semi–core states, a few heavy atoms in a sea of light atoms, and
(semi–) finite systems such as surfaces or molecules with a large vacuum region in
order to allow the long–range Coulomb interactions to decay. This is often referred
to as the multiple length scale deficiency of plane wave calculations.
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Figure 14. Percentage of total cpu time spend in global communication routines (solid line) and
in Fourier transform routines (dashed line) for a system of 64 silicon atoms on a Cray T3E/600
computer.

addition to the adaptation of the overlap routine, also the matrix multiply routines
needed for the orthogonalization step have to be done in parallel. Although there
are libraries for these tasks available the complexity of the code is considerably
increased.

3.9.5 Summary

Efficient parallel algorithms for the plane wave–pseudopotential density functional
theory method exist. Implementations of these algorithms are available and were
used in most of the large scale applications presented at the end of this paper
(Sect. 5). Depending on the size of the problem, excellent speedups can be achieved
even on computers with several hundreds of processors. The limitations presented
in the last paragraph are of importance for high–end applications. Together with
the extensions presented, existing plane wave codes are well suited also for the next
generation of supercomputers.

4 Advanced Techniques: Beyond . . .

4.1 Introduction

The discussion up to this point revolved essentially around the “basic” ab initio
molecular dynamics methodologies. This means in particular that classical nuclei
evolve in the electronic ground state in the microcanonical ensemble. This com-
bination allows already a multitude of applications, but many circumstances exist
where the underlying approximations are unsatisfactory. Among these cases are
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situations where

• it is necessary to keep temperature and /or pressure constant (such as during
journeys in phase diagrams or in the investigation of solid–state phase transi-
tions),

• there is a sufficient population of excited electronic states (such as in materials
with a small or vanishing electronic gap) or dynamical motion occurs in a single
excited states (such as after photoexcitation events),

• light nuclei are involved in crucial steps of a process (such as in studies of
proton transfer or muonium impurities).

In the following subsections techniques are introduced which transcede these limi-
tations. Thus, the realm of ab initio molecular dynamics is considerably increased
beyond the basic setup as discussed in general terms in Sect. 2 and concerning
its implementation in Sect. 3. The presented “advanced techniques” are selected
because they are available in the current version of the CPMD package 142, but their
implementation is not discussed in detail here.

4.2 Beyond Microcanonics

4.2.1 Introduction

In the framework of statistical mechanics all ensembles can be formally obtained
from the microcanonical or NV E ensemble – where particle number, volume and
energy are the external thermodynamic control variables – by suitable Laplace
transforms of its partition function; note that V is used for volume when it comes
to labeling the various ensembles in Sect. 4 and its subsections. Thermodynam-
ically this corresponds to Legendre transforms of the associated thermodynamic
potentials where intensive and extensive conjugate variables are interchanged. In
thermodynamics, this task is achieved by a “sufficiently weak” coupling of the
original system to an appropriate infinitely large bath or reservoir via a link that
establishes thermodynamic equilibrium. The same basic idea is instrumental in
generating distribution functions of such ensembles by computer simulation 98,250.
Here, two important special cases are discussed: thermostats and barostats, which
are used to impose temperature instead of energy and / or pressure instead of
volume as external control parameters 12,445,270,585,217.

4.2.2 Imposing Temperature: Thermostats

In the limit of ergodic sampling the ensemble created by standard molecular dynam-
ics is the microcanonical or NV E ensemble where in addition the total momentum
is conserved 12,270,217. Thus, the temperature is not a control variable in the New-
tonian approach to molecular dynamics and whence it cannot be preselected and
fixed. But it is evident that also within molecular dynamics the possibility to con-
trol the average temperature (as obtained from the average kinetic energy of the
nuclei and the energy equipartition theorem) is welcome for physical reasons. A
deterministic algorithm of achieving temperature control in the spirit of extended
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system dynamics 14 by a sort of dynamical friction mechanism was devised by Nosé
and Hoover 442,443,444,307, see e.g. Refs. 12,445,270,585,217 for reviews of this well–
established technique. Thereby, the canonical or NV T ensemble is generated in
the case of ergodic dynamics.

As discussed in depth in Sect. 2.4, the Car–Parrinello approach to ab initio
molecular dynamics works due to a dynamical separation between the physical
and fictitious temperatures of the nuclear and electronic subsystems, respectively.
This separability and thus the associated metastability condition breaks down if the
electronic excitation gap becomes comparable to the thermal energy or smaller, that
is in particular for metallic systems. In order to satisfy nevertheless adiabaticity in
the sense of Car and Parrinello it was proposed to couple separate thermostats 583 to
the classical fields that stem from the electronic degrees of freedom 74,204. Finally,
the (long–term) stability of the molecular dynamics propagation can be increased
due to the same mechanism, which enables one to increase the time step that still
allows for adiabatic time evolution 638. Note that these technical reasons to include
additional thermostats are by construction absent from any Born–Oppenheimer
molecular dynamics scheme.

It is well–known that the standard Nosé–Hoover thermostat method suffers from
non–ergodicity problems for certain classes of Hamiltonians, such as the harmonic
oscillator 307. A closely related technique, the so–called Nosé–Hoover–chain ther-
mostat 388, cures that problem and assures ergodic sampling of phase space even
for the pathological harmonic oscillator. This is achieved by thermostatting the
original thermostat by another thermostat, which in turn is thermostatted and so
on. In addition to restoring ergodicity even with only a few thermostats in the
chain, this technique is found to be much more efficient in imposing the desired
temperature.

Nosé–Hoover–chain thermostatted Car–Parrinello molecular dynamics was in-
troduced in Ref. 638. The underlying equations of motion read

MIR̈I = −∇IEKS −MI ξ̇1ṘI (268)
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for the electronic contribution. These equations are written down in density func-
tional language (see Eq. (75) and Eq. (81) for the definitions of EKS and HKS

e ,
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respectively), but completely analogues expressions are operational if other elec-
tronic structure approaches are used instead. Using separate thermostatting baths
{ξk} and {ηl}, chains composed of K and L coupled thermostats are attached to
the nuclear and electronic equations of motion, respectively.

By inspection of Eq. (268) it becomes intuitively clear how the thermostat works:
ξ̇1 can be considered as a dynamical friction coefficient. The resulting “dissipative
dynamics” leads to non–Hamiltonian flow, but the friction term can aquire positive
or negative sign according to its equation of motion. This leads to damping or
acceleration of the nuclei and thus to cooling or heating if the instantaneous kinetic
energy of the nuclei is higher or lower than kBT which is preset. As a result,
this extended system dynamics can be shown to produce a canonical ensemble
in the subspace of the nuclear coordinates and momenta. In spite of being non–
Hamiltonian, Nosé–Hoover (–chain) dynamics is also distinguished by conserving
an energy quantity of the extended system, see Eq. (272).

The desired average physical temperature is given by T and g denotes the num-
ber of dynamical degrees of freedom to which the nuclear thermostat chain is cou-
pled (i.e. constraints imposed on the nuclei have to be subtracted). Similarly, T 0

e is
the desired fictitious kinetic energy of the electrons and 1/βe is the associated tem-
perature. In principle, βe should be chosen such that 1/βe = 2T 0

e /Ne where Ne is
the number of dynamical degrees of freedom needed to parameterize the wavefunc-
tion minus the number of constraint conditions. It is found that this choice requires
a very accurate integration of the resulting equations of motion (for instance by us-
ing a high–order Suzuki–Yoshida integrator, see Sect. VI.A in Ref. 638). However,
relevant quantities are rather insensitive to the particular value so that Ne can be
replaced heuristically by N ′e which is the number of orbitals φi used to expand the
wavefunction 638.

The choice of the “mass parameters” assigned to the thermostat degrees of
freedom should be made such that the overlap of their power spectra and the ones
the thermostatted subsystems is maximal 74,638. The relations

Qn
1 =

gkBT

ω2
n

, Qn
k =

kBT

ω2
n

(270)

Qe
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2T 0
e

ω2
e

, Qe
l =

1

βeω2
e

(271)

assures this if ωn is a typical phonon or vibrational frequency of the nuclear subsys-
tem (say of the order of 2000 to 4000 cm−1) and ωe is sufficiently large compared
to the maximum frequency ωmax

n of the nuclear power spectrum (say 10 000 cm−1

or larger). The integration of these equations of motion is discussed in detail in
Ref. 638 using the velocity Verlet / rattle algorithm.

In some instances, for example during equilibration runs, it is advantageous to
go one step further and to actually couple one chain of Nosé–Hoover thermostats
to every individual nuclear degree of freedom akin to what is done in path integral
molecular dynamics simulations 637,644,646, see also Sect. 4.4. This so–called “mas-
sive thermostatting approach” is found to accelerate considerably the expensive
equilibration periods within ab initio molecular dynamics, which is useful for both
Car–Parrinello and Born–Oppenheimer dynamics.
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In classical molecular dynamics two quantities are conserved during a simula-
tion, the total energy and the total momentum. The same constants of motion
apply to (exact) microcanonical Born–Oppenheimer molecular dynamics because
the only dynamical variables are the nuclear positions and momenta as in classi-
cal molecular dynamics. In microcanonical Car–Parrinello molecular dynamics the
total energy of the extended dynamical system composed of nuclear and electronic
positions and momenta, that is Econs as defined in Eq. (48), is also conserved, see
e.g. Fig. 3 in Sect. 2.4. There is also a conserved energy quantity in the case of ther-
mostatted molecular dynamics according to Eq. (268)–(269). Instead of Eq. (48)
this constant of motion reads
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for Nosé–Hoover–chain thermostatted canonical Car–Parrinello molecular dynam-
ics 638.

In microcanonical Car–Parrinello molecular dynamics the total nuclear momen-
tum Pn is no more a constant of motion as a result of the fictitious dynamics of the
wavefunction; this quantity as well as other symmetries and associated invariants
are discussed in Ref. 467. However, a generalized linear momentum which embraces
the electronic degrees of freedom

PCP = Pn + Pe =
∑

I

PI +
occ∑

i

µ
〈
φ̇i

∣∣∣−∇r

∣∣∣φi
〉

+ c.c. (273)

can be defined 467,436; PI = MIṘI . This quantity is a constant of motion in
unthermostatted Car–Parrinello molecular dynamics due to an exact cancellation of
the nuclear and electronic contributions 467,436. As a result, the nuclear momentum
Pn fluctuates during such a run, but in practice Pn is conserved on the average as
shown in Fig. 1 of Ref. 436. This is analogues to the behavior of the physical total
energy Ephys Eq. (49), which fluctuates slightly due to the presence of the fictitious
kinetic energy of the electrons Te Eq. (51).

As recently outlined in detail it is clear that the coupling of more than one
thermostat to a dynamical system, such as done in Eq. (268)–(269), destroys the
conservation of momentum 436, i.e. PCP is no more an invariant. In unfavorable
cases, in particular in small–gap or metallic regimes where there is a substantial
coupling of the nuclear and electronic subsystems, momentum can be transferred
to the nuclear subsystem such that Pn grows in the course of a simulation. This
problem can be cured by controlling the nuclear momentum (using e.g. scaling or
constraint methods) so that the total nuclear momentum Pn remains small 436.
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