
Moldy User’s Manual
Revision: 2.25.2.6 for release 2.16

Keith Refson
Department of Earth Sciences

Parks Road
Oxford OX1 3PR

Keith.Refson@earth.ox.ac.uk

May 24, 2001

mailto:Keith.Refson@earth.ox.ac.uk

Copyright © 1988, 1993–1996 Keith Refson.
Permission is granted to make and distribute verbatim copies of this manual provided the copyright

notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the conditions

for verbatim copying, provided also that the entire resulting derived work is distributed under the terms
of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under
the above conditions for modified versions.

Acknowledgements

The initial implementation of the Nosé-Hoover and Gaussian thermostats was by Vladimir Murashov at
Dalhousie University. Rafael R. Pappalardo contributed the modifications to “mdshak” to write XYZ
format molecular graphics files. Craig Fisher contributed the “msd”, “mdavpos”, “bdist”, “mdbond”,
“ransub” and “syswrite” programs.

Thanks are due to Craig Fisher and José Manuel Martinez Fernandez for diligent proofreading of
several versions of the manual and many helpful suggestions on how to improve it. Any mistakes that
remain are my own.

Contents

1 Introduction 1
1.1 Terms and Conditions . 1

2 Algorithms and Equations 2
2.1 The Equations of Motion . 2
2.2 Integration Algorithms . 4
2.3 Potentials and Short-Range Forces . 5

2.3.1 Pressure and Stress . 5
2.3.2 Long Range Corrections . 5
2.3.3 Potential Functions . 5

2.4 The Ewald Sum . 6
2.4.1 Parameter Values . 7
2.4.2 Uniform Sheet Correction . 8
2.4.3 Surface Dipole Term . 8
2.4.4 Stress . 9

2.5 Periodic Boundaries — the Link Cell Method . 9
2.5.1 Molecular Aspects . 10
2.5.2 No minimum-image convention . 11
2.5.3 Cell or Strict cutoff . 11

2.6 Temperature Initialization and Control . 11
2.6.1 Rescaling . 12
2.6.2 Nosé-Hoover Thermostat . 13
2.6.3 Gaussian Thermostat . 13

2.7 Constant Stress/pressure . 14
2.7.1 Constrained h Matrix . 14
2.7.2 Constant-Pressure . 15

2.8 Radial Distribution Functions . 15
2.9 The Initial Configuration . 16

2.9.1 The Skew Start Method . 16
2.9.2 Initial Velocities . 17

2.10 Frameworks . 18
2.10.1 Implementation . 19
2.10.2 Stress and Pressure Undefined . 19
2.10.3 Charged Frameworks . 20

3 Running Moldy 21
3.1 The Control File . 21
3.2 Setting up the System . 22

3.2.1 System Specification . 22
3.2.2 The Initial Configuration . 26

3.3 Restarting from a Previous Run . 26
3.3.1 Periodic Backup . 27
3.3.2 Portable Restart Files . 27

i

3.4 Setting the Temperature . 28
3.5 Output . 29

3.5.1 Output units . 29
3.6 Radial Distribution Functions . 29
3.7 Dumping . 30
3.8 Constant Stress or Pressure Simulation . 32
3.9 Cutoffs and Adjustable Parameters . 33
3.10 Framework Simulations . 34
3.11 Messages and Errors . 34

4 Compiling and Modifying Moldy 36
4.1 Compilation . 36

4.1.1 Parallel Version (Message Passing) . 38
4.1.2 Shared-Memory Parallel Version . 39

4.2 Portability . 39
4.2.1 System Dependencies . 40
4.2.2 Optimization and Vectorization . 40
4.2.3 Optimization for Vector Architectures . 41

4.3 Modifying Moldy . 42
4.3.1 Adding a New Potential . 42
4.3.2 Porting the Parallel Version . 42

5 Program Structure 44
5.1 Data Structures . 44

5.1.1 Types and Typedefs . 44
5.1.2 Memory Management . 45
5.1.3 System Variables and Data Structures . 47

5.2 Files and Functions . 48
5.2.1 Source Files . 48

5.3 Flow of Control . 50
5.3.1 Input and Initialization . 50
5.3.2 Main timestep loop . 52
5.3.3 The Site-Forces Calculation . 56

5.4 Parallelization . 59
5.4.1 Parallel Strategy . 59
5.4.2 Implementation . 60
5.4.3 Input/Output and startup . 60
5.4.4 Distributed forces calculation . 61
5.4.5 Radial Distribution Functions . 62

A Example System Specifications 63
A.1 Argon . 63
A.2 TIPS2 Water . 63
A.3 Aqueous MgCl2 Solution . 63
A.4 Quartz . 64

B Utility Programs 65
B.1 Dumpanal . 65
B.2 Dumpconv . 65
B.3 Dumpext . 66
B.4 Mdavpos . 67
B.5 Mdbond and bdist . 67
B.6 Mdshak . 68
B.7 Mdvaf . 69
B.8 Moldyext . 70

ii

B.9 Msd . 71
B.10 Plotrdf . 72
B.11 Ransub . 72
B.12 Syswrite . 74

iii

List of Tables

3.1 Control Parameters . 23

B.1 Structure File Output Types . 67

iv

List of Figures

2.1 The Skew Start method . 17

3.1 Sample Moldy output. 29
3.2 Example output of radial distribution functions. 30

5.1 Storage layout of a 2-dimensional pointer-based pseudo-array 46
5.2(a) Block diagram of initialization function start up() . 50
5.2(b) Block diagram of initialization function start up() . 51
5.3 The main timestep loop . 53
5.4(a) Flow diagram of function do step() which performs a single timestep. 54
5.4(b) Flow diagram of function do step() which performs a single timestep. 55
5.5 The Link-Cell short-range force calculation . 57
5.6 Evaluation of the reciprocal-space parts of the ewald sum 58

v

vi

Chapter 1

Introduction

Moldy is a computer program for performing molecular dynamics simulations of condensed matter. It
can handle any assembly of rigid polyatomic molecules, atoms or ions and any mixture thereof. It uses
the ‘link cell’ method to calculate short-range forces and the Ewald sum technique to handle long-range
electrostatic forces. Simulations may be performed either in the usual NV E ensemble or in NV T , NσH
or NσT ensembles using Nosé-Hoover thermostat and Parrinello and Rahman constant-stress methods.
As the MD cell need not be cubic, the program is equally suitable for simulations of solids and liquids.

Most existing MD programs are limited in their capabilities, for example to one kind of potential
function, or molecular symmetry, or to some restricted number of molecules. Moldy is (as far as possible)
free from such arbitrary constraints. The system is specified at the beginning of each run and its size
is only limited by the amount of memory available to the program: if a system is too large to handle,
the solution is to buy some more memory. The system may contain a mixture of an arbitrary number of
molecular species, each with an arbitrary number of atoms and an arbitrary number of molecules of each.
Molecules or ions may be monatomic or polyatomic, linear or three dimensional in any combination. The
potential functions may be of the Lennard-Jones, Buckingham (including Born-Mayer) or MCY types,
and other potential types may be easily added. Such flexibility is possible because Moldy is written in
the ‘C’ language which permits dynamic memory allocation.

Moldy is written to be highly portable and has been tested on a wide range of computers and operating
systems, including VAX/VMS, MS-DOS and Unix1 (both BSD and system V varieties). It should be
straightforward to move it to any other machine with a good ‘C’ compiler.

To be of real use a simulation program must run efficiently on modern high-speed computers, which
are increasingly of vector or parallel architectures. Moldy is written so as to be highly vectorizable and
has been tested on a range of vector machines from manufacturers including Cray, Convex, Stardent and
Alliant. On the cray XMP-48 its performance can exceed 100 MFlop/sec (on a suitably large system).
Moldy is also able to run on a parallel computer of either shared or distributed memory architectures,
and has been tested on multiprocessors from Stardent, Convex, Cray Research, SGI and IBM SP1 and
Cray Research T3D massively parallel machines.

1.1 Terms and Conditions

Permission to compile and run Moldy is granted to any individual or organization without restriction. This
program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

Moldy is free software; you may redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2, or (at your option) any
later version. The terms of the GNU General Public License are described in the file COPYING which is
included with the source distribution, or from the Free Software Foundation, 675 Mass Ave, Cambridge,
MA 02139, USA.

1Goodness knows who will own the Unix registered trademark by the time you read this.

1

Chapter 2

Algorithms and Equations

This chapter describes the implementation of the molecular dynamics technique as used in Moldy. It
is not intended as an introduction to MD simulations, and does assume some familiarity with the basic
concepts of microscopic models and simulations thereof. The book by Allen and Tildesley[2] is a very
good introductory text, covering both the theory and the practicalities and is highly recommended. It
also contains comprehensive references to the scientific literature of microscopic computer simulation.

Moldy is designed to simulate a common class of models of atomic or molecular systems. The assump-
tions are: that the system is an assembly of rigid molecules, atoms or ions; that the forces of interaction
are derived from continuous potential functions acting between (usually atomic) sites on each molecule;
that the dynamics are governed by the classical Newton-Euler equations of motion. A major aim of
Moldy has been to allow the most general of models within that class and to impose as few restrictions
as possible. In particular arbitrary mixtures of different molecules are allowed and several popular forms
of potential functions are catered for.

2.1 The Equations of Motion

If we denote the force exerted by atom α of molecule i on atom β of molecule j by fiαjβ1 then the total
force acting on molecule i is

Fi =
∑
j

∑
β

∑
α

fiαjβ (2.1)

and the torque is given by
Ni =

∑
α

(riα −Ri)× fiα (2.2)

where Ri = 1/Mi

∑
αmiαriα is the centre of mass of molecule i.

The motion is governed by the Newton-Euler equations

MiR̈i = Fi (2.3)

Ii · ω̇i − ωi × Ii · ωi = Ni (2.4)

where ωi is the angular velocity of the molecule, Ii =
∑
αmiα(p2

iα1 − piαpiα) is the inertia tensor and
piα = riα −Ri is the atomic site co-ordinate relative to the molecular centre of mass.

The orientations of the molecules are represented by quaternions as has now become common practice.
They are preferred over Euler angles for two reasons. Firstly they lead to equations of motion which are
free of singularities[13] which means that no special-case code is required. This leads to much improved

1A comment on notation is appropriate here. In this chapter, site quantities are denoted by lowercase letters, molecular
quantities by uppercase, sites are indexed by greek letters and molecules by roman. A missing index denotes a sum over
the corresponding sites or molecules so that, for example riαjβ is a site-site vector and Fij the molecule-molecule force.

2

numerical stability of the simulation[14]. Secondly, molecular symmetry operations and combinations of
rotations are elegantly expressed in terms of a simple quaternion algebra[14, 42].

A quaternion is an ordered number quartet which obeys the algebra given by Pawley[40]. The mul-
tiplication rule in that reference may be restated as a matrix product treating each quaternion as a
4-vector. If p ≡ (p0, p1, p2, p3) and q ≡ (q0, q1, q2, q3) are quaternions then

pq =

p0 −p1 −p2 −p3

p1 p0 −p3 p2

p2 p3 p0 −p1

p3 −p2 p1 p0

q0

q1

q2

q3

 (2.5)

The quaternion q̃ conjugate to q is defined as q̃ = (q0,−q1,−q2,−q3) so that

qq̃ = (q2
0 + q2

1 + q2
2 + q2

3 , 0, 0, 0). (2.6)

The norm is defined as |q| ≡
√
q2
0 + q2

1 + q2
2 + q2

3 and q is called a unit quaternion if |q| = 1. Any possible
rotation can be represented by a unit quaternion. Du Val shows[54] that if q=(cos α2 , l sin

α
2) (where we

have combined the last three components to form a 3-vector) and p = (0, r) then the operation

p′ ≡ (0, r′) = qpq̃ (2.7)

corresponds to a rotation of the vector r by an angle of α about the axis l. The components may also
be expressed in terms of the Euler angles as2

q0 = cos
φ+ ψ

2
cos

θ

2

q1 = sin
φ− ψ

2
sin

θ

2

q2 = cos
φ− ψ

2
sin

θ

2

q3 = sin
φ+ ψ

2
cos

θ

2
. (2.8)

The relationship between the time derivative of a quaternion and the principal frame angular velocity
was given by Evans[13, Equation 27] and rewritten using quaternion algebra by Refson[48] as

2q̇ = q(0,ωp) (2.9)

The second derivative is given by

2q̈ = q(−1/2(ωp)2, ω̇p)
= q(−2|q̇|2, ω̇p) (2.10)

Equations 2.10 and 2.4 allow the simulation to be implemented using quaternions and their derivatives as
the dynamic variables for rotational motion, and this is the method employed in Moldy. This second order
formulation was first used by Powles et al.[43] and Sonnenschein showed[53] that it gives substantially
better stability than if angular velocities and accelerations are used as dynamic variables.

Using equations 2.10 to describe the dynamics means that they are integrated as if all four com-
ponents were independent. Therefore the normalization condition qq̃ = 1 may not be exactly satisfied
after performing an integration step. Moldy adopts the usual practice of scaling all components of the
quaternion after each timestep to satisfy the normalization condition[14].

It is less widely realized that the second order equations (2.10) introduce a second unconstrained
variable into the procedure. Differentiating equation 2.6 gives a constraint on the quaternion derivatives

q0q̇0 + q1q̇1 + q2q̇2 + q3q̇3 = 0 (2.11)
2The definition of quaternions used here differs from that used in Evans’ paper[13, equation 21] in the sign of q2 or ξ. This

error has been compounded by subsequent authors[53, 52, 31] who also managed to permute the components which means
that the parameters do not form an ordered number quartet which obeys quaternion algebra. Like Allen and Tildesley[2,
page 88] we follow the definition of Goldstein[19, pages 143 and 155].

3

which is just the q0 component of equation 2.9. Just as with the normalization condition, the integration
algorithm will not preserve this condition exactly unless explicit measures are taken. After each timestep
the constraint may be re-established by subtracting the discrepancy from the quaternion derivatives. If
δ = q0q̇0 + q1q̇1 + q2q̇2 + q3q̇3 then the corrected quaternion derivatives are given by

q̇′ = q̇− δq. (2.12)

Experiments conducted while developing Moldy show that enforcing this constraint significantly decreases
the fluctuations in the total energy.

Linear molecules are a slightly special case as the moment of inertia about the molecular axis is zero.
Though there are unique methods to represent this situation[2, page 90] Moldy uses a minor modification
of the quaternion algorithm. All that is necessary is a little special-case code to avoid dividing by the zero
component of inertia in the solution of equation 2.4 and to hold the components of angular velocity and
acceleration about the molecular axis to zero. This has the considerable advantage of uniform treatment
of all kinds of molecules which is convenient when dealing with heterogeneous mixtures.

2.2 Integration Algorithms

The dynamical equations 2.3 and 2.4 are integrated using this author’s modification[47] of the Bee-
man algorithm[4]. For atomic systems the accuracy is of the same order as the commonly used Verlet
algorithm[55].

The accuracy of common integration algorithms was discussed by Rodger[49] who showed that the
Beeman algorithm is the most accurate of the supposedly “Verlet-equivalent” algorithms. The Beeman
algorithm is the only one accurate to O(δt4) in the co-ordinates and O(δt3) in the velocities compared
to the velocity Verlet algorithm which is only O(δt) in the velocities. This is insufficient for an accurate
determination of the kinetic energy, pressure and other dynamic quantities. More seriously, it fails badly
in the case of polyatomic molecules and for constant-pressure and constant-temperature methods where
the (generalized) velocities enter the dynamical equations themselves.

Velocity-dependent forces occur in equations 2.4 and 2.10, in the Parrinello-Rahman constant-pressure
equations (section 2.7) and in the Nosé-Hoover heat bath algorithms (section 2.6.2). These usually present
a problem to non “predictor-corrector” algorithms which are based on the assumption that the forces
depend only on the co-ordinates. Fincham has devised a scheme to allow integration of the rotational
equations using Verlet-like algorithms[15], which is widely used despite the potential problems caused by
the low accuracy of the velocities being propagated into the dynamics.

These cases are easily and accurately handled by the modification to Beeman’s equations proposed by
the author[47]. These may be summarized using the symbol x to represent any dynamic variable (centre-
of-mass co-ordinate, quaternion or MD cell edge), ẋ(p) and ẋ(c) to represent “predicted” and “corrected”
velocities respectively.

i x(t+ δt) = x(t) + δt ẋ(t) + δt2

6 [4ẍ(t)− ẍ(t− δt)]
ii ẋ(p)(t+ δt) = ẋ(t) + δt

2 [3ẍ(t)− ẍ(t− δt)]
iii ẍ(t+ δt) = F ({xi(t+ δt), ẋ(p)

i (t+ δt)}, i = 1 . . . n)
iv ẋ(c)(t+ δt) = ẋ(t) + δt

6 [2ẍ(t+ δt) + 5ẍ(t)− ẍ(t− δt)]
v Replace ẋ(p) with ẋ(c) and goto iii. Iterate to convergence

 (2.13)

The predictor-corrector cycle of steps iii to v is iterated until the predicted and corrected velocities
have converged to a relative precision of better than 1 part in 10−7, which in practice takes 2 or 3 cycles.
This iteration is not as inefficient as it might at first appear as it does not include the expensive part
of the calculation — the recalculation of the site forces. Only the angular accelerations and quaternion
second derivatives must be evaluated at each iteration using equations 2.4 and 2.10, and this operation
is relatively cheap.

4

2.3 Potentials and Short-Range Forces

The forces determining the dynamics of the system are derived from the potential function denoted by
φiαjβ(riαjβ). The indices i and j run over all molecules in the system and α and β over sites on the
respective molecule. The total potential energy of the system is

U =
∑
i

∑
j>i

∑
α

∑
β

φiαjβ(riαjβ). (2.14)

where fiαjβ = −∇φiαjβ(riαjβ) is the force acting on site β of molecule j from site α of molecule i.
The total force and torque acting on any particular molecule are calculated using equations 2.1 and 2.2.

Since fiαjβ and therefore Fij are short-ranged forces (i.e. they decay faster than r−3) one can define a
cutoff radius, rc. Interactions between sites whose separation rij is greater than rc are assumed to be
negligible and need not be evaluated. In the case of a polyatomic molecular system it is usual to apply
the cutoff according to the intermolecular separation Rij .

2.3.1 Pressure and Stress

The internal stress of a system of interacting molecules is given by Allen and Tildesley[2, pp 46-49] in
terms of the molecular virial, but we may rewrite it more conveniently in terms of the atomic site virial
as

V πsr =

〈∑
i

MiViVi +
∑
i

∑
j>i

RijFij

〉
(2.15)

=

〈∑
i

MiViVi +
∑
i

∑
j>i

∑
α

∑
β

riαjβfiαjβ −
∑
i

∑
α

piαfiα

〉

The quantity piα ≡ riα−Ri is the co-ordinate of each site relative to the molecular centre-of-mass. The
pressure is easily evaluated as one third of the trace of the stress tensor.

2.3.2 Long Range Corrections

The truncation of the interactions at the cut-off radius does introduce some errors into the calculated
potential energy and stress. By neglecting density fluctuations on a scale longer than the cutoff radius
we may approximate the errors and calculate correction terms[2, pp 64-65].

Uc =
2π
V

∑
α

∑
β

NαNβ

∫ ∞
rc

r2φαβ(r) dr (2.16)

PcV =
2π
3V

∑
α

∑
β

NαNβ

∫ ∞
rc

r3 dφαβ(r)
dr

dr

= Uc +
2π
3V

∑
α

∑
β

NαNβr
3
cφαβ(rc) (2.17)

πc = Pcδ (2.18)

where the sums run over all the distinct kinds of sites, Nα is the total number of sites of type α in the
system and δ is the unit matrix.

2.3.3 Potential Functions

Moldy supports most common forms of potential function including,

Lennard-Jones φ(r) = ε((σr)12 − (σr)6)

5

6-exp φ(r) = − A
r6 +B exp(−Cr)

This is the most general 6-exp form and includes potential of the Born-Mayer
and Buckingham forms.

MCY φ(r) = A exp(−Br)− C exp(−Dr)
generic φ(r) = A exp(−Br) + C/r12 −D/r4 − E/r6 − F/r8

This is a composite which contains terms of several inverse powers which may
be useful for ionic solution simulations.

In addition to the short-range potential electric charges may be specified for each atomic site which
interact according to Coulomb’s Law. See the following section for details.

2.4 The Ewald Sum

The long range Coulomb interactions are handled using the Ewald Sum technique in three dimensions[6, 2,
p. 156]. The electrostatic potential of a system of charges is expressed as a sum of short-range and long-
range contributions. Each term is written as a series, the first in real space and the second, obtained by
Fourier transformation using the periodicity of the MD cell, in reciprocal space. The expression for the
Coulomb energy U is

U =
1

4πε0

∑†

n

N∑
i=1

N∑
j=i+1

qiqj
erfc(α|rij + n|)
|rij + n|︸ ︷︷ ︸

Real-space term

+
1
ε0V

∑
k>0

1
k2
e−

k2

4α2

∣∣∣∣∣
N∑
i=1

qi cos(k · ri)

∣∣∣∣∣
2

+

∣∣∣∣∣
N∑
i=1

qi sin(k · ri)

∣∣∣∣∣
2
︸ ︷︷ ︸

Reciprocal-space term

(2.19)

− α

4π
3
2 ε0

N∑
i=1

q2
i︸ ︷︷ ︸

Point self-energy

− 1
4πε0

M∑
n=1

Nm∑
κ=1

Nm∑
λ=κ+1

qnκqnλ
erf(α|rκλ|)
|rκλ|︸ ︷︷ ︸

Intra-molecular self energy

− 1
8ε0V α2

∣∣∣∣∣
N∑
i=1

qi

∣∣∣∣∣
2

︸ ︷︷ ︸
Charged system term

+

 1
6ε0V

∣∣∣∣∣
N∑
i=1

qiri

∣∣∣∣∣
2

︸ ︷︷ ︸
Surface dipole term

where the “daggered” summation indicates omission of site pairs i, j belonging to the same molecule if
n = 0. The meaning of the symbols is

n lattice vector of periodic array of MD cell images
k reciprocal lattice vector of periodic array of MD cell images
k modulus of k
i, j absolute indices of all charged sites
n index of molecules
κ, λ indices of sites within a single molecule
N total number of charged sites
M total number of molecules
Nm number of sites on molecule m
pi co-ord of site i relative to molecular centre-of-mass, ri −Ri

qi charge on absolute site i
qmκ charge on site κ of molecule m
ri Cartesian co-ordinate of site i

6

rij rj − ri
α real/reciprocal space partition parameter
πlm instantaneous stress tensor
δlm Kronecker delta symbol
l,m xyz tensor indices
V volume of MD cell

and the force on charge i is given by

fi = −∇riU

=
qi

4πε0

∑†

n

N∑
j=1
j 6=i

qj

{
erfc(α|rij + n|)
|rij + n|

+
2α√
π
e−α

2|rij+n|2
}

rij + n
|rij + n|2

︸ ︷︷ ︸
Real-space term

+
2
ε0V

∑
k>0

qi
k

k2
e−

k2

4α2

sin(k · ri)
N∑
j=1

qj cos(k · rj)− cos(k · ri)
N∑
j=1

qj sin(k · rj)

︸ ︷︷ ︸
Reciprocal-space term

(2.20)

+

 qi
6ε0V

 N∑
j=1

qjrj

︸ ︷︷ ︸

Surface dipole term

The molecular forces and torques F and N are evaluated from the site forces fi using equations 2.1
and 2.2.

Notice that the equation 2.19 for the energy contains a correction for the intra-molecular self-energy,
whose derivative is absent from the equation for the forces (equation 2.20). This term corrects for
interactions between charges on the same molecule which are implicitly included in the reciprocal space
sum, but are not required in the rigid-molecule model. Though the site forces fi do therefore include
unwanted terms these sum to zero in the evaluation of the molecular centre-of-mass forces and torques
(equations 2.1 and 2.2) (by the conservation laws for linear and angular momentum).

2.4.1 Parameter Values

Both the real- and reciprocal-space series (the sums over n and k) converge fairly rapidly so that only
a few terms need be evaluated. We define the cut-off distances rc and kc so that only terms with
|rij + n| < rc and |k| < kc are included. The parameter α determines how rapidly the terms decrease
and the values of rc and kc needed to achieve a given accuracy.

For a fixed α and accuracy the number of terms in the real-space sum is proportional to the total
number of sites, N but the cost of the reciprocal-space sum increases as N2. An overall scaling of N

3
2 may

be achieved if α varies with N . This is discussed in detail in an excellent article by David Fincham[16].
The optimal value of α is

α =
√
π

(
tR
tF

N

V 2

) 1
6

(2.21)

where tR and tF are the execution times needed to evaluate a single term in the real- and reciprocal-space
sums respectively. If we require that the sums converge to an accuracy of ε = exp(−p) the cutoffs are
then given by

rc =
√
p

α
(2.22)

kc = 2α
√
p (2.23)

7

A representative value of tR/tF specific to Moldy has been established as 5.5. Though this will vary
on different processors and for different potentials its value is not critical since it enters the equations as
a sixth root.

It must be emphasized that the rc is used as a cutoff for the short-ranged potentials as well as for the
electrostatic part. The value chosen above does not take the nature of the non-electrostatic part of the
potential into account. It is therefore the responsibility of the user to ensure that rc is adequate for this
part too.

2.4.2 Uniform Sheet Correction

The 5th term in equation 2.19 is necessary only if the system has a non-zero net electric charge, and is
useful in special cases such as framework systems.

In a periodic system the electrostatic energy is finite only if the total electric charge of the MD cell is
zero. The reciprocal space sum in equation 2.19 for k = 0 takes the form

1
k2
e−

k2

4α2

∣∣∣∣∣
N∑
i=1

qi

∣∣∣∣∣
2

which is zero in the case of electroneutrality but infinite otherwise. Its omission from the sum in equa-
tion 2.19 is physically equivalent to adding a uniform jelly of charge which exactly neutralizes the un-
balanced point charges. But though the form of the reciprocal space sum is unaffected by the uniform
charge jelly the real-space sum is not. The real-space part of the interaction of the jelly with each point
charge as well as the self-energy of the jelly itself must be included giving the fifth term in equation 2.19.

2.4.3 Surface Dipole Term

The optional final term in equations 2.19 and 2.20 if used performs the calculations under different periodic
boundary conditions. It was suggested by De Leeuw, Perram and Smith[32] in order to accurately model
dipolar systems and is necessary in any calculation of a dielectric constant.

The distinction arises from considerations of how the imaginary set of infinite replicas is constructed
from a single copy of the MD box[2, pp 156-159]. Consider a near-spherical cluster of MD cells. The
“infinite” result for any property is the limit of its “cluster” value as the size of the cluster tends to
infinity. However this value is non-unique and depends on the dielectric constant, εs of the physical
medium surrounding the cluster. If this medium is conductive (εs =∞) the dipole moment of the cluster
is neutralized by image charges, whereas in a vacuum (εs = 1) it remains. It is trivial to show that in
that case the dipole moment per unit volume (or per MD cell) does not decrease with the size of the
cluster.

The final term in equation 2.19 is just the dipole energy, and ought to be used in any calculation of
the dielectric constant of a dipolar molecular system. It is switched on by Moldy ’s control parameter
surface-dipole. Note that as it represents the dipole at the surface of the cluster the system is no
longer truly periodic.

Conversely it must not be used if the simulated system contains mobile ions. Consider an ion crossing
a periodic boundary and jumping from one side of the MD cell to another. In that case the dipole moment
of the MD cell changes discontinuously. Because of the surface dipole term the calculation would model a
discontinuous macroscopic change in the dipole moment of the whole system caused by an infinite number
of ions jumping an infinite distance. This is manifested in practice by a large and discontinuous change
in the energy of the system and on the force on each charge within it.

This situation is completely non-physical but is easily avoided. However the problem may also arise
more subtly even when there are no mobile ions if a framework is being simulated (section 2.10). The
framework is treated as a set of discrete, but fixed atoms rather than a molecular unit. If the shape of the
unit cell is allowed to vary then ions constituting the framework may indeed cross MD cell boundaries
causing the aforementioned problems.

8

2.4.4 Stress

The internal stress (and pressure) of an atomic system is given by the volume-derivative of the internal
energy. The situation is slightly more complicated for rigid molecules since molecules do not scale with
volume and only the inter-molecular distances vary. The resulting expression for the Coulombic part of
the instantaneous stress πeik is[37, Appendix A]

V πelm =
1

4πε0

∑†

n

N∑
i=1

N∑
j=i+1

qiqj

{
erfc(α|rij + n|)
|rij + n|

+
2α√
π
e−α

2|rij+n|2
}

(rij + n)l(rij + n)m
|rij + n|2︸ ︷︷ ︸

Real-space term

+
1
ε0V

∑
k>0

1
k2
e−

k2

4α2

(
δlm−2

[
1
k2

+
1

4α2

]
klkm

)
∣∣∣∣∣
N∑
i=1

qi cos(k · ri)

∣∣∣∣∣
2

+

∣∣∣∣∣
N∑
i=1

qi sin(k · ri)

∣∣∣∣∣
2
︸ ︷︷ ︸

Reciprocal-space term

−
N∑
i=1

(Fi)l(pi)m︸ ︷︷ ︸
Molecular Virial Correction

− δlm
8ε0V α2

∣∣∣∣∣
N∑
i=1

qi

∣∣∣∣∣
2

︸ ︷︷ ︸
Charged system term

(2.24)

The true internal stress is the ensemble average, πlm =
〈
πelm + πs.r.

lm + πKlm
〉
, where πs.r.

lm and πKlm are the
short-range force and kinetic contributions respectively. πelm enters into the Parrinello-Rahman equations
of motion (see section 2.7).

The term marked Molecular Virial Correction in equation 2.24 is the difference between the site-site
virial

∑
i fi · ri and the molecular virial

∑
i Fi · Ri and is subtracted after all of the site forces and

the molecular forces have been calculated including the short-range potential components which are not
included in the equations above. Though it is not apparent in reference[37, Appendix A] this term has
exactly the same form for all parts of the stress — the short-range potential and the real- and reciprocal
space Coulombic parts.

2.5 Periodic Boundaries — the Link Cell Method

The real space part of the Ewald (equation 2.19) and short-range potential energy is a sum of contributions
over pairs of sites. In both cases the interaction decays rapidly with separation, which means that only site
pairs closer then some cutoff distance rc need be considered. Several methods are available to enumerate
site pairs and choose those within the cutoff.

Most simple MD codes simply loop over all pairs of particles in the MD box and compute the separation
r for each. If r < rc the interaction is computed. This method suffers from several disadvantages. Since
for any given site, the interaction with any other site is considered only once, only the nearest periodic
image of that site is included (the minimum-image convention). However this restricts the cutoff radius
to less than half the MD cell dimension rc < 2L. More serious is the way the computational time scales
with the number of sites. If there are N sites, there are O(N2) separations to compute and the overall
time therefore scales as O(N2).

The Verlet Neighbour List scheme[2, pp 146-149] makes use of the spatial locality of the interaction
potential by maintaining a list for each site of all the “neighbouring” sites (i.e. all those within the cutoff
distance). This can give considerable gains for moderate numbers of sites, but it ultimately requires
O(N2) time (to build the lists) as well as O(N) storage for the lists.

Moldy uses an implementation of the link cell method of Quentrec et al.[45] described in Allen and
Tildesley’s book[2, pp 149-152] which is a true O(N) algorithm. The fundamental idea is that the MD
cell is partitioned into a number of smaller cells, known as subcells. Every timestep a linked list of all
the particles contained in each subcell is constructed. The selection of all pairs of particles within the
cutoff is achieved by looping over all pairs of subcells within the cutoff and particles within the subcells.

9

Because of their regular arrangement, the list of neighbouring subcells is fixed and may be precomputed.
Its construction takes only O(N) operations and only O(N) pair interactions need be calculated.

One drawback of the link cell method has been the difficulty of implementing it efficiently for vector
processors. The linked list of “neighbour” particles is not stored in the regular-stride array which is
required for vectorization. Heyes and Smith[22] pointed out that gather operations might be used to
assemble a temporary array of neighbour particle co-ordinates from which the interaction potential and
forces could be evaluated in vector mode. A scatter operation is then used to add the resulting forces
to the total force array. This is the technique used in Moldy. Almost all modern vector machines have
scatter/gather hardware which means these operations are fairly cheap.

2.5.1 Molecular Aspects

The treatment of molecules as rigid bodies adds an additional complication to link-cell and neighbour-list
algorithms. If atomic sites are assigned to link-cells, then there is no obvious way of determining in the
innermost force loop whether two sites belong to the same, or to different molecules. It is therefore not
possible to exclude intra-molecular site-site interactions from the force and potential energy calculation.
Furthermore molecules may be “split” by the periodic boundaries, for example half of the sites of some
molecule may reside near the bottom of the MD box and the remainder near the top. This means that
there is no longer a unique molecular centre of mass and equations 2.15 and 2.24 can no longer be used
to compute the internal stress or pressure.

On the other hand, entire molecules may be assigned to subcells on the basis of their centre-of-mass
co-ordinates. All atomic sites belonging to a molecule are placed in the list belonging to the particular
cell containing the molecular centre of mass. This enables intramolecular interactions to be excluded from
the calculation and equations 2.15 and 2.24 can be used to compute the internal stress. There is however
a computational disadvantage, which arises because sites belonging to a large molecule may lie outside
the subcell. In order to correctly include site-site interactions within the cutoff, the list of neighbour
cells must be extended to include all cells where any parts are closer than rc + 2rmol where rmol is the
molecular radius. There is an inevitable increase in computer time required to process the lists, and in
the case of a “strict cutoff” many unnecessary intra-site interactions must be evaluated. In the case of
a system containing a mixture of (perhaps a few) very large molecules and other, small molecules the
computer-time penalty may be very large indeed.

Versions of Moldy prior to 2.16 used this “molecular binning” approach and suffered from the associ-
ated computational penalty. Versions 2.16 and later adopt the former “site binning” approach, which is
much more efficient. The intra-molecular potential energy (which is necessarily included in the site-site
interactions) is computed separately and subtracted from the total, to yield just the inter-molecular part.
Intra-molecular forces sum to zero in the calculation of the centre-of-mass forces and molecular torques,
just as with the reciprocal-space contribution to the forces.

The internal stress is computed using a novel approach, inspired by the extension of the Verlet
neighbour list algorithm developed by Bekker et al.[5]. Bekker showed that the (tensor) virial may be
written

W =
∑
n

N∑
i=1

N∑
j=i+1

ri(j.n)fi(j.n)

=
N∑
i=1

N∑
j=i+1

rifi +
∑
n

ngn (2.25)

where n is the lattice vector between the central MD cell and its periodic images and is also used as
an index to represent a sum over all image cells and the expression (j.n) refers to the periodic image of
particle j in image cell n. The quantity gn

gn =
N∑
i=1

N∑
j=i+1

f(j.n)i =
1
2

N∑
i=1

N∑
j=1

f(j.n)i (2.26)

10

is half the total force exerted by all particles in the central MD cell on all particles in image cell n. This is
easily evaluated in the inner loops of the link-cell force calculation by summing separately the pair forces
on all particles in each image cell. The image-cell translation vector nij has already been computed in
order to evaluate the site-site vector rij + nij .

Using equation 2.25 to compute the virial has another advantage. It is not necessary to perform the
sum of contributions within the inner loop of the force calculation (c.f. equation 2.15) since it depends
only on the site co-ordinates and the total force acting on each site. This gives a considerable reduction
in the number of computations in the costliest part of the whole calculation.

2.5.2 No minimum-image convention

One notable feature of the implementation of the link cell method in Moldy is that it does not follow the
minimum image convention used in most MD codes. Instead the list of neighbouring cells, and hence
interactions considered, includes all periodic images of a particle which are within the cutoff. This means
that it is quite safe to use a cutoff of more than half of the MD cell side in any direction.

2.5.3 Cell or Strict cutoff

There are two options for the way in which site-site interactions are selected for inclusion in the total
energy and forces. These are cell-based cutoff and strict cutoff and are selected by the strict-cutoff
control parameter.

In cell-based mode (strict-cutoff=0) the neighbour cell list is built to include only those cells whose
centre is within the cutoff radius of the centre of the reference cell. All interactions between sites in the
neighbouring cell list are computed. This is a “quick and dirty” method as some interactions between
sites closer than the cutoff will inevitably be excluded whereas some outside the cutoff range will be
included.

In strict mode (strict-cutoff=1) all interactions between pairs of sites within the cutoff are included.
The neighbouring cell list contains all pairs of cells with any parts closer than the cutoff radius. This
ensures that all appropriate interactions are included. Furthermore, all interactions between sites further
apart than the cutoff are excluded (by the expedient of setting their separation to a large value in the
potential calculation). This means that large and asymmetric molecules are handled correctly.

For a given cutoff radius the cell-based mode is rather quicker than the strict mode since the neigh-
bouring cell list is much smaller and fewer interactions are computed. However to ensure that significant
interactions are not omitted, the cutoff ought to be set to a greater value than strictly required. This
tends to offset the potential speed gain. On the other hand, if strict isotropy is required in a liquid
simulation for example then the strict cutoff option ought to be used.

2.6 Temperature Initialization and Control

From the equipartition theorem, every degree of freedom in the system, f has the same kinetic energy,
given by 〈K〉f = 1

2kBT . The effective temperature of the system is therefore given by the ensemble
average of its kinetic energy.

T = 〈T〉 =
2
gkB

〈
g∑

f=1

Kf

〉
=

1
3NkB

〈
N∑
i=1

miv
2
i + ωi · I · ωi

〉
(2.27)

Here Kf is the instantaneous kinetic energy of degree of freedom f , g is the number of degrees of freedom,
N is the number of molecules, T is an instantaneous “temperature”.

It is almost always desirable that a simulation be conducted so that the temperature is the supplied
parameter rather than the kinetic energy. This requires some mechanism to fix the average kinetic energy
at thermal equilibrium. The initial kinetic energy may be set approximately by choosing random velocities
which sample the Maxwell-Boltzmann distribution at the desired temperature, and this is indeed what
Moldy does on starting a new run (see section 2.9.2). But because the initial configuration is usually far
from equilibrium it will have too much potential energy. As the run progresses this will be converted into

11

kinetic energy, raising the temperature above the desired value. It is therefore necessary to have some
mechanism for removing excess kinetic energy as the run progresses.

Moldy offers several mechanisms to control the temperature. The common technique of velocity scaling
is suitable for use during the equilibration period but does not generate meaningful particle trajectories.
The Nosé-Hoover method couples the system to a heat bath using a fictional dynamical variable and the
Gaussian thermostat replaces the Newton-Euler equations by variants of which the kinetic energy is a
conserved quantity.

2.6.1 Rescaling

At periodic intervals linear and angular velocities are multiplied by a factor of

s =

√
gkBT

2K
(2.28)

where T is the desired temperature. By repeatedly setting the “instantaneous” temperature to the correct
value while the system approaches its equilibrium state, the kinetic energy is made to approach its desired
value. Scaling may be performed every timestep, or every few depending on the simulation conditions.

An MD run with scaling does not generate a valid statistical ensemble, and it must therefore be
switched off before any calculation of thermodynamic averages is performed.

Moldy incorporates two refinements to the basic scaling algorithm (which are selected by the control
parameter scale-options). Linear and angular velocities can be scaled independently, either for the
whole system or for each species individually. In this way, one does not rely on the interactions of these
degrees of freedom for convergence to equilibrium. In many systems these degrees of freedom are loosely
coupled and the exchange of energy between them is slow. In these cases individual scaling can speed up
the approach to equilibrium considerably.

The other refinement addresses the problem of setting the temperature accurately. At equilibrium the
system’s kinetic energy fluctuates with mean-square amplitude3

〈
δK2

〉
= 1

2g (kBT)2, which corresponds
to a rms fluctuation in the instantaneous “temperature”

√
〈δT2〉 =

√
2/gT . The difficulty with applying

equation 2.28 is the instantaneous kinetic energy K in the denominator. Strictly, scaling ought to use
the average kinetic energy 〈K〉 as in equation 2.27, but this quantity is not known until after the run is
completed. Because of this equation 2.28 can only set the temperature to an accuracy of

√
1/g. This is

often inadequate for purposes of comparison with experiment.
In order to allow the temperature to be set with greater accuracy, Moldy allows the use of a partial

average in the denominator,

s =

√
gkBT

2 〈K〉′
(2.29)

where 〈K〉′ is the “rolling” average of K over some number of preceding timesteps. That number is
determined by the control parameter roll-interval.

This option should be used cautiously. The change in 〈K〉 upon scaling only has a significant effect on
the average after many timesteps. If the subsequent scaling is performed before this change is reflected in
the value of 〈K〉′ it will use an out-of-date value of the average kinetic energy. It is therefore recommended
that the number of timesteps between scalings be greater than or equal to the number used to compute the
rolling average. Otherwise it is possible to produce wild overshoots and oscillations in the temperature.

Finally, there is a method for tackling really difficult cases when even individual scaling is unable
to keep the temperature under control. This might be a far-from-equilibrium configuration where the
potentials are so strong that velocities rapidly become very large, or when a single molecule acquires a very
large velocity. In that case the velocities can all be re-initialized randomly from the Maxwell-Boltzmann
distribution periodically. This provides a kind of pseudo Monte-Carlo equilibration for difficult cases.

3This formula actually applies to the Canonical rather than the microcanonical ensemble, but it serves for the purpose
of this argument.

12

2.6.2 Nosé-Hoover Thermostat

A more sophisticated approach than rescaling is to couple the system to a heat bath. Nosé[35] proposed
an extended-system Hamiltonian to represent the degrees of freedom of the thermal reservoir: Moldy uses
the simpler but equivalent formulation by Hoover[23, 2]. The equations of motion (equations 2.3 and 2.4)
are modified thus

R̈i =
Fi
Mi
− ζṘi

Ii · ω̇i − ωi × Ii · ωi = Ni − ζIi · ωi (2.30)

ζ̇ =
g

Q
(kBT − kBT)

where most of the symbols have their previous meanings, g is the number of degrees of freedom in the
system. ζ is a new “heat bath” dynamic variable and Q is the associated fictitious “mass” parameter.
With a suitable choice of Q these equations generate trajectories which sample the canonical ensemble[35].
In other words both averages and fluctuations calculated as time averages from a simulation run tend
to their canonical ensemble limits.4 This does not necessarily guarantee the correctness of dynamical
quantities.

It is apparent from equations 2.30 that ζ has the dimensions of a time derivative, and is analogous
to the unit cell velocities in equations 2.32. It is therefore treated as if it was a velocity and updated
using only steps ii–v of the Beeman integration procedure (equations 2.2). Note that the equation for
the centre-of-mass acceleration depends indirectly on the velocities through T as well as explicitly. The
iteration on steps iii–v of equations 2.2 is therefore essential to integrate these equations consistently.

There are two criteria to be considered when choosing the value of Q. The coupling to the heat
bath introduces non-physical oscillations of period t0 = 2π

√
Q/2gkBT which may be easily detected

in the total energy[36]. Firstly it must be arranged that there are sufficiently many oscillations during
a simulation run that the computed thermodynamic values represent averages over many periods t0.
This ensures that the configurations used to calculate the averages sample the whole of the phase space
generated by the fluctuations in ζ to represent the canonical ensemble. Secondly Q should be chosen so
that t0 is large compared to the characteristic decay time of dynamical correlation functions. This is to
ensure that the fictitious dynamics of the heat bath are decoupled from the real molecular dynamics, and
is particularly important in a simulation of dynamic properties[8] such as velocity correlation functions.
Since the first criteria favours a small Q and the second a large one, it may be necessary to increase the
total simulation time in order to satisfy them both.

2.6.3 Gaussian Thermostat

An alternative approach is known as “constrained dynamics” whereby the equations of motion are modi-
fied to generate trajectories which exactly satisfy T = T at all times. One such is the Gaussian constraint
(see Allen and Tildesley[2] pp 230-231). The equations of motion are

R̈i =
Fi
Mi
− ζT Ṙi

ζT =

∑
j vj · Fj∑
jMjv2

j

(2.31)

Ii · ω̇i − ωi × Ii · ωi = Ni − ζRIi · ωi

ζR =

∑
j ωj ·Nj∑

j ωj · Ij · ωj

These bear a superficial resemblance to equations 2.30 but now ζ is not itself a dynamical variable
but a function of the other dynamical variables. Note that T does not enter explicitly into equations 2.31

4There has been some discussion in the literature of the validity of representing a heat bath by a single dynamical
variable, which the more diligent reader may wish to explore[9, 36].

13

since T is now a conserved quantity equal to its initial value at all subsequent times. Perhaps surprisingly
these equations of motion generate configurational averages from the canonical ensemble, but this does
not hold true for the momenta and therefore dynamics nor for fluctuations.

2.7 Constant Stress/pressure

It is frequently desirable to conduct simulations under conditions of constant pressure or stress, rather
than constant volume. For example, this allows the simulation of a solid-state phase transition with a
change of symmetry or unit cell size. Moldy incorporates two constant-stress methods which allow the
MD cell to change size and shape, and two variants which constrains the MD cell to uniform dilation to
give an isobaric ensemble.

In a constant-stress simulation the MD cell changes in size and shape in response to the imbalance
between the internal and externally applied pressure. For an exposition of the method the reader should
refer to the papers of Andersen[3], Parrinello and Rahman [39], Wentzcovitch[56], Cleveland[11] and
to Nosé and Klein’s extension to rigid molecular systems[37]. The equation of motion for the reduced
centre-of-mass co-ordinates Si = h−1Ri is

MiS̈i = h−1Fi −MiG
−1ĠṠi (2.32)

replacing the straightforward Newton equation 2.3. h denotes the 3× 3 MD cell matrix whose columns
are the MD cell vectors a, b and c, Fi is the centre-of-mass force and G = h′h. Equation 2.4, the Euler
equation, governs the angular motion exactly as in the constant-volume case.

In the Parrinello-Rahman method the dynamics of the unit cell matrix h are governed by the equation

W ḧ = (π − p)σ (2.33)

where W is a fictitious mass parameter, σ = V h′−1 and p is the external pressure. The instantaneous
internal stress π is given by

π =
1
V

N∑
i=1

mi(hiṡi)2 + πs.r. + πe (2.34)

with the short-ranged and electrostatic components given by equations 2.15 and 2.24 respectively.
Wentzcovitch[56] and Cleveland[11] showed that the Parrinello-Rahman equations suffer from at least

one significant flaw, namely that they are not “modularly invariant”. The dynamics depends on the
choice of MD cell which can give rise to unphysical symmetry breaking effects. They offer an improved,
but more complicated expression for the unit cell dynamics

W ḧ =
1
V

(π − p)h+W

(
−2V̇
V
ḣ+

1
V 2

Tr(σ′σḣ′ḣ)h+
1
V
ḣσ′ḣ+

1
V 2

(ḣσ′σḣ′ − σḣ′ḣσ′)h

)
(2.35)

which rectifies these deficiencies. The atomic dynamics are governed by equation 2.32 as before.
The choice of fictitious mass, W is governed by similar considerations to those concerning the heat

bath mass, Q discussed in section 2.6.2. 5

2.7.1 Constrained h Matrix

Nosé and Klein[37] describe and address the problem of the whole MD cell rotating during the course of
the simulation. This is because angular momentum is not conserved in a periodic system, and because
the h matrix has 9 degrees of freedom, three more than needed to specify the position and orientation of
the MD cell. Their solution is to constrain the h matrix to be symmetric, and involves a modification of
the Parrinello-Rahman equations.

5Because of the different forms of the fictitious kinetic energy term in the Lagrangians, typical values of W for equa-
tion 2.35 are smaller by a factor of the order of L4, where L is the MD cell edge, than those useful when the dynamics is
given by equation 2.32.

14

Moldy incorporates a different constraint which is simpler to implement (as it does not require mod-
ification of the equations of motion) and which also has a more obvious physical interpretation. The
three sub-diagonal elements of the h matrix are constrained to zero. That is, the MD cell vector a
is constrained to lie along the x-axis and b is constrained to lie in the xy-plane. Physically this may
be thought of as implementing an MD box lying on a horizontal surface under the influence of a weak
gravitational field. The implementation is trivial; at each timestep the acceleration of those components,
ḧij , is set to zero which is equivalent to adding a fictitious opposing force.

This constraint technique is not restricted merely to eliminating redundant degrees of freedom, but
can also be used for other purposes. For example it may be used to allow uniaxial expansion only. MD
cell constraints are selected using the control parameter strain-mask (see section 3.8). A value of 238
will freeze all of the off-diagonal components of h.

2.7.2 Constant-Pressure

The above h matrix constraints are not adequate for simulations of liquids at constant pressure. Since
a liquid can not support shear stress there is no restoring force to keep the simulation cell nearly cubic,
and it will therefore drift to a parallelepiped or elongated shape. Moldy also supports an alternative
constraint which only permits isotropic MD cell expansion. The isotropic variant of equation 2.35 gives

W ḧ =
1

3V
Tr (π − p)h− 2W

9

(
V̇

V

)2

h (2.36)

and if the cell is cubic this is equivalent to the constant-pressure dynamics of Andersen[3], with W =
3MAndersen.

Applying a uniform-dilation constraint to the Parrinello-Rahman Lagrangian gives equations of motion

W ḧ = V
Tr (π − p)
Tr (h′h)

h (2.37)

which replace equation 2.33.
Both of the above equations cause the MD cell to dilate or contract uniformly, and apply whether or

not the initial h-matrix corresponds to a cubic cell. It is therefore possible to switch between a constant-
stress and the corresponding constant-pressure ensemble during a run. This is the only reason to choose
equation 2.37. Equation 2.36 (selected by const-pressure=4) is normally the best option for liquid
simulations.

2.8 Radial Distribution Functions

The radial distribution function or RDF is one of the most important structural quantities characterizing
a system, particularly for liquids. For a one-component system, the RDF is defined as[20, p445]

g(r) =
1
ρ2

〈∑
i

∑
j 6=i

δ(r + ri − rj)

〉
(2.38)

≈ V 〈δ(r + r1 − r2)〉

where we use the angle brackets to denote a spherical average as well as the usual configurational aver-
age. Allen and Tildesley[2, pp184,185] describe how to evaluate g(r) from a histogram of pair distances
accumulated during a simulation run. With the notation that N is the total number of particles, b is the
number of the histogram bins, δr is the bin width (so that r = bδr), nhis(b) is the accumulated number
per bin, τ is the number of steps when binning was carried out

g(r + δr/2) =
3nhis(b)

4πρNτ [(r + δr)3 − r3]
(2.39)

15

In the case of a molecular system, the partial RDF for atoms α and β is defined as[20, p 445]

gαβ(r) =
1
ρ2V

〈N(N − 1)δ(r + r1α − r2β)〉 (2.40)

which may be rewritten more usefully for an arbitrary multi-component mixture by eliminating the
molecular density ρ and number N as

gαβ(r) = V 〈δ(r + r1α − r2β)〉 (2.41)

In the simulation this is evaluated by an expression very similar to equation 2.39

gαβ(r + δr/2) =
3Nnhis(b)

4πρNαNβτ [(r + δr)3 − r3]
(2.42)

2.9 The Initial Configuration

One of the more trying aspects of initiating a molecular dynamics simulation is getting it started in the
first place. It is not hard to see the reason why. An MD integration algorithm will only generate a good
approximation to the correct equations of motion if the forces and velocities of the particles are less than
some value. The timestep is chosen so that this criterion is satisfied for near-equilibrium configurations.
But if the configuration is far from equilibrium certain forces may be extremely large (due to atoms
approaching each other too closely). And worse, the breakdown of the integrator leads to breakdown of
the conservation laws and the system evolves to a state even further from equilibrium.

One way around this difficulty is to start the system from a configuration known to be near-equilibrium,
such as a known crystal structure. For a solid-state simulation this is the method of choice, and Moldy
allows any initial structure to be specified and replicated to fill the MD cell. In the case of a liquid, a
crystalline initial state is less desirable, and indeed, none may be known. Furthermore such a starting
configuration restricts the allowed number of molecules to a multiple of the number in the unit cell and
worse, may force the use of a non-cubic MD cell.

Moldy incorporates a novel method of generating an initial configuration which, in the main, overcomes
these problems.

2.9.1 The Skew Start Method

The essence of the Skew Start method is to generate a configuration which, though not periodic in 3
dimensions, nevertheless is sufficiently regular to guarantee a minimum separation between molecular
centres of mass. Figure 2.1 demonstrates the principle in 2 dimensions.

The N molecules are placed at some suitable interval a on a line drawn between one corner of the MD
cell (of side L) and one of its periodic images. Clearly the index (h, k) of the image cell corner should
be chosen so that the molecule spacing, a is close to the spacing of the line’s images, d. For simplicity,
choose k = 1 which leads to the condition:

a =
L
√
h2 + 1
N

≈ L√
h2 + 1

= d

⇒ h ≈
√
N − 1 (2.43)

Therefore the optimum value of h is the nearest integer to
√
N − 1.

The formalism may be extended to three dimensions, and yields the results for the molecular and
“inter-line” spacings a, dy and dz respectively

a =
L

N

√
h2 + k2 + l2

dy = L

√
k2 + l2√

h2 + k2 + l2
(2.44)

dz ≈ L
l

k
(assuming h/k is an integer)

16

a

d

Figure 2.1: The Skew Start method. N molecules are placed at evenly-spaced intervals, a on a line joining
a corner of the MD cell to its image k cells away (5 in this illustration). When mapped back into the
original cell this guarantees a minimum separation of min(d, a).

The “equal spacing” requirements are satisfied approximately by

h ≈ N2/3

k ≈ N1/3 (2.45)
l = 1

which when substituted into equation 2.44 yields

a ≈ dy ≈ dz ≈ LN−1/3 (2.46)

Using this method an arbitrary number of molecules may be packed into a cubic cell with a guaranteed
minimum centre-of-mass separation of approximately LN−1/3. In contrast to other methods, such as
random placement with excluded volume, it will always yield a configuration no matter how high the
density. It is also very simple to implement.

It still remains to determine the initial orientations of the molecules in the case of polyatomics. In
the current implementation these are assigned randomly, which works well for small or near-spherical
molecules. Further refinements which may help avoid overlaps for elongated molecules are possible, such
as a periodic sequence of orientations along the line, but no investigation of this possibility has yet been
carried out.

In practice the method has proved to work well for water and aqueous systems and always yields a
configuration which may be evolved towards equilibrium by the MD equations of motion. Any feedback
on its performance in more difficult cases will be welcome.

2.9.2 Initial Velocities

It remains to choose the initial velocities of the molecules to complete the specification of the initial
configuration. The recipe is the same irrespective of whether the molecules are started on a lattice or from
a skew start. The initial centre-of-mass velocities are chosen from the Maxwell-Boltzmann distribution
at the temperature specified for the simulation[2, pp 170]. That is, the velocities are chosen from a set

17

of random numbers with a Gaussian distribution and normalized so that the probability density p(v) of
the xyz component of the velocity vik of molecule k is

p(vik) =
(

mk

2πkBT

)1/2

exp(−mkv
2
ik

2kBT
) (2.47)

This is easily accomplished given a random number generator which samples from a Gaussian distribution
with unit variance. Given a random number Rik, each component of velocity is set to

vik =
√
kBT

mk
Rik (2.48)

Each component of the angular velocity (expressed in the principal frame) has a probability distribution

p(ωpik) =
(

Iik
2πkBT

)1/2

exp(−
Iik(ωpik)2

2kBT
) (2.49)

which is ensured by assigning a random velocity

ωpik =
√
kBT

Iik
Rik (2.50)

Since the dynamical variables used by Moldy for the angular co-ordinates are in fact the quaternions
and their derivatives, we must set the quaternion derivatives and accelerations to the corresponding
values. Using equations 2.9 and 2.10 we have

q̇ = q(0,ωp/2) (2.51)

and
q̈ = −1

4
(ωp)2q (2.52)

Finally, we note that if a molecule has less than three degrees of freedom, that is Iik = 0 for some i
the corresponding angular velocities etc. are simply set to zero.

2.10 Frameworks

In addition to the bulk properties of solids and liquids, much attention has been devoted in recent years
to using MD simulation to model atoms or molecules interacting with surfaces or other structures such
as zeolites. The distinctive feature of such a situation is that the 2- or 3-dimensional surface or structure
is larger than the interacting molecules by many orders of magnitude. In fact the idealization of this
system makes the structure infinite in extent. An atomistic model of this kind of a system necessitates
choosing the periodic boundary conditions of the MD cell to be commensurate with the periodicity of
the surface or structure. This manual will refer to an infinitely repeating crystalline surface or structure
as a framework.

There are two possible formulations of a system of this kind for use in a MD simulation. Firstly the
framework may be modelled as a set of independent atoms interacting via pair potentials. This merely
requires specifying the correct initial structure and MD cell plus a suitable set of pair potentials. The
latter model both the internal forces which determine the crystal structure of the framework and its
interaction with the atoms or molecules of the fluid. Conceptually there is no distinction between this
situation and a regular solid or liquid system, and the mechanics of initiating a simulation are handled
in exactly the usual manner.

However there are situations in which this “atomic” approach is impractical. Because the system being
modelled is essentially “two-phase” the atoms of the framework find themselves under the influences of
two distinct kinds of force. There are the strong forces, usually covalent or ionic, which bind the atoms
to form the framework itself and the weaker, non-bonded forces of the interaction with the fluid. Ideally
these could all be modelled by a single consistent set of interatomic potentials which are sufficiently

18

transferable to yield an accurate crystal structure for the framework as well as the molecular structure
of the fluid and its interaction with the surface. Regrettably such potentials are hard to find.

Furthermore the characteristic vibrational frequencies of the solid framework will probably be much
higher than those of the fluid. Consequently the timestep must be chosen sufficiently small to accurately
model the crystalline vibrations. This will usually be far smaller than the value required for the fluid,
necessitating very lengthy MD runs to model both regimes properly. This is, of course, exactly the
argument used to justify rigid-molecule models.

Moldy implements a variation on the rigid-molecule model to simulate a rigid framework structure
periodically extended throughout space. There are a few subtleties which must be correctly handled to
achieve a consistent implementation, which are described hereafter.

2.10.1 Implementation

The framework is in many respects exactly like an ordinary molecule. It should be defined to exactly fill
the MD cell so that the periodic repeat of the cell generates the periodicity of its crystal structure. The
distinctive features of a framework molecule are:

� The framework is fixed in space and is not allowed to rotate. Any rotation would of course destroy
the 3D structure. For most purposes it is convenient to regard the framework as being at rest,
hence translational motion is forbidden also.

� No interactions between sites on a framework molecule and on itself or any of its periodic images are
evaluated. That is, framework-framework interactions, both potentials and forces, are systemati-
cally excluded from the real-space and reciprocal-space parts of the Ewald sum, including the point
and intra-molecular self terms of equation 2.19. (The exact modifications to equations 2.19,2.20
etc. are left as an exercise for the reader.)

� In the real-space force calculation, sites are treated as being independent atoms rather than belong-
ing to a molecule. In particular the cutoff is applied on the basis of the (framework) site to (fluid)
molecule distance. By virtue of the “all-image” convention, all the requisite molecule-framework
interactions are correctly included. When assigning sites to sub-cells, each site is therefore placed
in the sub-cell which contains its co-ordinate. (By contrast sites belonging to an ordinary molecule
are placed in the cell which contains the molecular centre of mass.)

With these modifications, Moldy is able to successfully model a fluid in contact with a 3D rigid
framework. 2-dimensional systems such as a fluid at a surface or between two surfaces may be represented
as a 3D system by adding an artificial periodicity in the third dimension. To reduce the errors so
introduced, the framework can be made “large with space inside” to fill a MD cell with a large c-axis.

In the case of a 3D framework it is clearly not sensible to allow the MD cell to change shape or size,
since this would destroy the internal structure of the framework. However if the framework represents a
2D layer or surface, then the layer spacing may be allowed to vary using the constant-stress equations
(section 2.7) and applying constraints to allow only the c-axis to fluctuate. In that case, bear in mind
that the dynamics are governed by the Parrinello-Rahman equations of motion for the cell, rather than
the Newtonian equations for the layer. In particular the mass is given by the parameter W rather than
the mass of the framework molecule. (These may, of course be set equal if required.) Note also that no
layer-layer interactions are calculated, and any force is the result of the externally applied pressure.6

Finally there are two subtle complications which arise from the framework concept.

2.10.2 Stress and Pressure Undefined

There is no unique definition of the internal stress or pressure of a framework system. The pressure of a
system in a space with periodic boundary conditions is defined in terms of the molecular virial

W =
1
3

N∑
i=1

N∑
j 6=i

Rij · Fij (2.53)

6This is a restriction of the current implementation and may be lifted in future versions.

19

But the framework has no centre-of-mass, and so the quantity Rij can not be defined. The site-virial
formulation of equation 2.15 is of no assistance as the definition of the “internal” co-ordinate piα involves
the centre of mass co-ordinate Ri. Neither can one simply choose a convenient reference Ri. Since the
force exerted by the fluid acting on the framework is in general non-zero, the term∑

i

∑
α

piαfiα =
∑
i

∑
α

riαfiα −
∑
i

RiFi (2.54)

clearly depends on Ri. The situation may also be viewed physically. The definition of pressure of a
system is the derivative of the free energy with respect to volume. But with an infinite rigid framework
the volume derivative can not be defined.

The useful quantity in this case is the partial pressure of the fluid. Though not currently implemented,
this may be rectified in a future version of Moldy.

Finally we note that in the case of a 2D layer structure, which is not rigid in the third dimension the
perpendicular component if the stress tensor does have a physical meaning and is correctly calculated.

2.10.3 Charged Frameworks

A minor complication arises when using a framework which has a non-zero net electric charge. Although
the system as a whole may be electrically neutral, the omission of framework-framework interactions from
the calculation also means that the k = 0 term does not vanish. To see this examine equation 2.19. In
the non-framework case the indices i and j in the terms∣∣∣∣∣

N∑
i=1

qi cos(k · ri)

∣∣∣∣∣
2

=
N∑
i=1

N∑
j=1

qiqj cos(k · ri) cos(k · rj)

run over all site pairs. If k = 0 the squared sum is∣∣∣∣∣
N∑
i=1

qi

∣∣∣∣∣
2

= 0

If a framework is present the formulation becomes∣∣∣∣∣
N∑
i=1

qi cos(k · ri)

∣∣∣∣∣
2

−

∣∣∣∣∣
N∑

i=M+1

qi cos(k · ri)

∣∣∣∣∣
2

assuming sites M + 1 . . . N are the framework sites. On setting k = 0 this reduces to∣∣∣∣∣
N∑
i=1

qi

∣∣∣∣∣
2

−

∣∣∣∣∣
N∑

i=M+1

qi

∣∣∣∣∣
2

It is therefore necessary to modify the charged-system term of equation 2.19 to

Uz = − 1
8ε0V α2

∣∣∣∣∣
N∑
i=1

qi

∣∣∣∣∣
2

−

∣∣∣∣∣
N∑

i=M+1

qi

∣∣∣∣∣
2
 (2.55)

20

Chapter 3

Running Moldy

The way Moldy is invoked depends to some extent on the operating system, but usually by issuing
the command moldy.1 For Unix(tm) Windows 95 and NT and MS-DOS the executable file moldy or
MOLDY.EXE should be placed in the shell search path (e.g. in the current directory)2. There is no GUI
and Moldy should always be run from a command line, from a terminal window under Unix or a MS-
DOS window under Windows 95/NT. There are two optional arguments - the name of the control file
(see section 3.1) and the output file (see section 3.5). If either is omitted, control input is read from the
“standard input” which may be a terminal or a job command file depending on the operating system and
circumstances, and the output is written to “standard output” which may be a terminal or batch job
logfile.3 Here are examples for VAX/VMS and Unix (tm), which assume that in each case the command
has been set up to invoke Moldy. Under VMS the commands

$ moldy control.dat output.lis
$ moldy control.dat

will start Moldy which will read its input from control.dat. The output will be directed to the file output.lis
in the first case and written to the terminal or batch log in the second. Under UNIX any of

% moldy < control > output.lis
% moldy control output.lis
% moldy control

will cause moldy to read from the file called control and in the first two examples to write its output to
output.lis. The command-line interface for Windows and MS-DOS is very similar.

3.1 The Control File

The information needed to initiate and control a run of Moldy is specified in a file known as the control
file. This contains the parameters governing the run e.g. the number of timesteps to be executed or the
frequency of output, and the names of files to be used e.g. for reading a restart configuration from or for
writing the output to. Parameters in the control file are specified by entries of the form keyword = value
which appear one to a line, terminated by the special keyword end. Spaces and blank lines are ignored as
are comments (i.e. the remainder of a line following a # symbol) and keywords may be entered in upper
or lower case. For example

title= Moldy example # This is a comment

1On VMS, moldy may be defined as a foreign command by $ moldy :== $mydisk:[mydir]moldy
2It is important that the dumpext utility is found in a directory in the shell search path as it is invoked by several of the

other utilities to read dump files.
3Some operating systems (Unix and MS-DOS) allow file redirection whereby the standard input is associated with some

file. This may also be used to supply the control file, provided that no command line parameter is given.

21

The above blank line is ignored
nsteps = 1000
step=0.0005
restart-file = RESTART.DAT
end # The control file ends here

sets the title of the simulation to “Moldy example”, the number of steps to execute to 1000, the timestep
to 0.0005ps and supplies the name of a restart file to read from.

It is not necessary to specify all of the parameters on each run. Unless it is explicitly assigned a value
in the control file, each parameter has a default value. This is either the value listed in table 3.1 or, in
the case where the simulation is continuing from a restart file, the value it had on the previous run (see
section 3.3). Parameters are read in sequence from the control file and if one appears more than once
only the final instance is used.

The two most important parameters are step which sets the size of the simulation timestep (in ps),
and nsteps which specifies the number of steps to perform. Together these control the length of time
to be simulated. It is also possible to specify that a run should be terminated after a certain amount of
computer time has been used - given by parameter cpu-limit. This will be particularly useful in batch
mode systems, where the run is killed after some specified CPU time has elapsed. Setting cpu-limit to
the maximum time allowed will cause Moldy to terminate the run before the limit is reached and write
out a backup file (see section 3.3.1).

There are several kinds of parameters:

character strings Apart from title these are just file names e.g. sys-spec-file. No checks are
performed on the validity of the name (because Moldy has to work on many different computer
systems), so if you make a mistake you are likely to get an error message to the effect that Moldy
couldn’t find the file you asked for. To remove a default value, just specify a null string e.g.
save-file = .

booleans These are just switches which turn a feature off or on. ‘0’ means off or false and ‘1’ means on
or true. The parameters text-mode-save, new-sys-spec, surface-dipole and lattice-start
are booleans.

real parameters Several parameters are real numbers e.g. step which specifies the timestep. They may
be entered in the usual floating point or scientific notation e.g. step = 0.0005 or step = .5e-3,
and are taken to be in the units given in table 3.1.

integer parameters Parameters such as dump-level take a numeric value, which should be an integer.

timestep-related parameters Several parameters govern when some calculation begins and ends and
how frequently it is performed in between. These are known as “begin”, “end” and “interval”
parameters, but are really a special case of integer parameters. For example begin-average,
dump-interval and scale-end. The calculation begins on the timestep specified on the begin
parameter, occurs every interval timesteps thereafter and ends after the timestep specified by
the end parameter. Setting the interval parameter to zero is the usual method of turning that
calculation off.

The begin and end parameters behave in a special fashion when the simulation is continued from
a restart file; they are interpreted relative to the current timestep. Notice especially that nsteps,
the number of timesteps is treated in this way.

A complete list of the parameters, their meanings and default values appears in table 3.1.

3.2 Setting up the System

3.2.1 System Specification

The information which describes to Moldy the system to be simulated and the interaction potentials is
contained in a file known as the system specification file. This may be presented to Moldy in either of

22

Table 3.1: Control Parameters

name type default function
title character Test Simulation A title to be printed on all output.
nsteps integer 0 Number of MD steps to execute.
cpu-limit real 1e20 Terminate run if excessive CPU time used.
step real 0.005 Size of timestep (in ps)
sys-spec-file character null Name of system specification file. Appended to

control file if null.
lattice-start boolean false Switch for crystalline initial configuration.
save-file character null File to save restart configuration in.
restart-file character null File to read restart configuration from.
new-sys-spec boolean false Read restart configuration with changed system

specification.
text-mode-save boolean false Write a portable “restart” file consisting of

control, system specification and lattice start
files.

density real 1.0 Initial density in g cm−3. Used by skew start
only to determine initial MD cell dimensions.

scale-interval integer 10 Number of steps between velocity scalings.
scale-end integer 1000000 When to stop scaling.
const-temp integer 0 1 for Nosé-Hoover, 2 for Gaussian thermostat.
ttmass real 100 Translational inertia parameter for

Nosé-Hoover thermostat (kJ mol−1 ps2).
rtmass real 100 Rotational inertia parameter for Nosé-Hoover

thermostat (kJ mol−1 ps2).
scale-options integer 0 Select variations on scaling or thermostat.
temperature real 0 Temperature of initial configuration for scaling

and thermostat (K).
const-pressure integer 0 1 Parrinello and Rahman constant stress

2 P-R compatible constant pressure ensemble
3 Wentzcovitch/Cleveland constant stress
4 Andersen constant pressure.

w real 100.0 Extended system mass parameter (amu).
pressure real 0 External applied pressure (MPa).
strain-mask integer 200 Bitmask controlling h matrix constraint.
alpha real auto α parameter for Ewald sum. Set any negative

value to disable Ewald sum.
k-cutoff real auto Reciprocal space cut off distance in Å−1.
cutoff real auto Direct space cutoff distance in Å.
strict-cutoff boolean false Flag to select rigorous or cheap but

approximate cutoff algorithm.
surface-dipole boolean false Include surface dipole term in Ewald sum.
roll-interval integer 10 Period over which to calculate rolling averages.
print-interval integer 10 How frequently to print normal output.
begin-average integer 1001 When to start accumulating the

thermodynamic averages.
average-interval integer 5000 How frequently to calculate and print averages.
reset-averages boolean false Discard accumulated averages in restart file.
begin-rdf integer 1000000 When to start accumulating radial distribution

function information.
rdf-interval integer 20 How frequently binning calculation is

performed.

23

Table 3.1: Control Parameters (continued)

name type default function
rdf-out integer 5000 How frequently to calculate and print RDFs.
rdf-limit real 10 Calculate RDFs up to what distance? (Å)
nbins integer 100 Number of binning intervals between 0 and

rdf-limit.
xdr boolean true Write restart, backup and dump files in

portable binary format using Sun XDR.
dump-file character null Template of file names used for data dumps.
begin-dump integer 1 Timestep to begin dumping at.
dump-interval integer 20 How frequently to perform dumps.
dump-level integer 0 Amount of information to include in dump.
ndumps integer 250 Number of dump records in each dump file.
backup-interval integer 500 Frequency to write backup file.
backup-file character MDBACKUP Name of backup file.
temp-file character MDTEMPX Name of temporary file used for writing restart

configurations.
subcell real 0 Size of sub-cell (in Å) to divide MD cell into for

link cell force calculation.
seed integer 1234567 Seed for random number generator.
page-width integer 132 Number of columns on output paper.
page-length integer 44 Number of lines on a page of output.
mass-unit real 1.6605402e-27 Unit of mass for system specification file.
length-unit real 1e-10 Unit of length for system specification file.
time-unit real 1e-13 Unit of time for system specification file.
charge-unit real 1.60217733e-19 Unit of charge for system specification file.

two ways: If the control file parameter sys-spec-file is null or absent, it is assumed to be appended to
the end of the control file. Otherwise it is read from the file whose name is the value of sys-spec-file.

This file is divided into two sections. First is the description of the molecules, atoms or ions, which is
followed by the potential functions. As for the control file, the input is case independent and free format,
but line structured. Blank lines, spacing and comments are ignored.

The physical description consists of a series of entries, one for each molecular species, terminated by
the keyword end. The entry for species i should have the form

species-namei Ni
id1 x1 y1 z1 m1 q1 name1

id2 x2 y2 z2 m2 q2 name2

...
...

...
...

...
...

...
idni xni yni zni mni qni nameni

where species-namei is the name of the molecule and Ni is the number of molecules of that type in the
system. Each molecule has ni atoms, one for each line in that group and each kind of atom is identified
by a number idi (the site id) which will be used to specify the appropriate potential parameters. Its
co-ordinates are (xi, yi, zi), its mass is mi, its charge is qi and its name is namei. See Appendix A for
some sample system specification files.

If there is more than one atom of any type (in the system - not just the same molecule) it is sufficient
to identify it by its id (and the site co-ordinates!). If mi, qi or namei are given they must agree exactly
with the previous values or an error will be signalled.

Site ids, masses and charges are all checked for ‘reasonableness’ and impossible values cause an error.
The set of site ids does not have to start at 1 or be contiguous, but since this may indicate a mistake, a
warning is issued.

24

Following the physical specification is the specification of the potential functions. This takes the form

potential-type
i j p1

ij p2
ij . . . prij

k l p1
kl p2

kl . . . prkl
...

...
...

...
...

...
m n p1

mn p2
mn . . . prmn

end

where potential-type is one of the keywords Lennard-Jones, Buckingham, MCY, generic, morse or hiw to
identify the kind of potentials to be used, i, j, k, l,m, n are site ids and pαij is the αth potential parameter
between sites i and j. There should be one line for each distinct pair of site ids. If any pair is omitted a
warning is issued and the parameter values are set to zero.

The meaning of the parameters for the currently defined potentials is as follows:

Lennard-Jones The potential is
φ(rij) = ε((σ/rij)12 − (σ/rij)6),

and has two parameters, ε(≡ p1
ij) and σ(≡ p2

ij), which occur on each line in that order. Note
that the definition of ε includes the factor of 4 more usually separated out. The control parameter
time-unit may be divided by four to read potentials specified in the standard form.

Buckingham This includes potentials of the Born-Mayer type and has formula

φ(rij) = −Aij/r6
ij +Bij exp(−Cijrij).

The three parameters appear on each line in the order A,B,C.

MCY This type supports potentials of the form of the water model of Matsuoka, Clementi and Yoshimine[33],

φ(rij) = Aij exp(−Bijrij)− Cij exp(−Dijrij),

and the four parameters appear on the line in the order A,B,C,D.

generic This contains a number of inverse power terms and an exponential repulsion in support of ionic
solution models. It takes the form

φ(rij) = Aij exp(−Bijrij) + Cij/r
12
ij −Dij/r

4
ij − Eij/r6

ij − Fij/r8
ij

with the six parameters Aij – Fij .

morse This is the Busing-Ida-Gilbert plus Morse-potential as used in the Japanese MD program Mdxorto.
It has the form

φ(rij) = Bijexp((Cij − rij)Dij)−Eij/r6
ij + Fij exp(−2Gij(rij −Hij))− 2Fij exp(−Gij(rij −Hij))

with seven parameters Bij – Hij .

HIW This is a Lennard-Jones potential with an extra fourth-power term to describe ion-water interactions
in solution using the HIW model of R. R Pappalardo and E. Sanchez-Marcos[38]. The form is

φ(rij) = Aij/r
4
ij +Bij/r

6
ij + Cij/r

12
ij

Other types of potential may be easily added: see section 4.3.1.
It is possible to specify the units in which these quantities are given by means of the control file

parameters mass-unit, length-unit, time-unit and charge-unit (which are themselves specified in
SI units). All potential parameters, site masses and charges, but not co-ordinates are taken to be in
those units. Their default values are amu, Å, 0.1ps and qe, which means that the unit of energy is
kJ mol−1. So to read in Å, amu and kcal mol−1, specify time-unit=4.8888213e-14, for Å, amu and eV
use time-unit=1.0181e-14, and for Lennard-Jones potentials specified in Å, amu and ε in K (ie E/kB)
use time-unit=0.548343e-12, which includes the extra factor of 4.

Once the system specification has been read in, all quantities are converted to ‘internal’ units: a.m.u.,
Å, ps, and

√
(a.m.u. Å

3
ps−2/(4πε0)). The prototype molecule for each species is then shifted so that its

zero of coordinates lies on its centre of mass, and rotated into the principal frame (polyatomics only).

25

3.2.2 The Initial Configuration

Moldy provides two methods of setting up an initial configuration. By default the skew start method
of section 2.9.1 is used to place the molecular centres of mass in a regular arrangement which ensures
molecular separation. If there is more than one species present, molecules of each are chosen randomly
for each site. Molecular orientations are chosen randomly from a uniform distribution. This method has
been found to work well for reasonably small or fairly isotropic molecules and it is anticipated that it will
be the usual method of starting a simulation of the liquid state. On the other hand, if the constituent
molecules are sufficiently large and irregular, or if it is intended to simulate the solid state then the lattice
start method will be more appropriate.

This method is activated by setting the control parameter lattice-start to 1, and creates the initial
configuration by periodic replication of some crystalline unit cell. In that case Moldy expects to find,
following the end which terminates the system specification, an initial configuration specification of the
following form:

a b c α β γ nx ny nz
species-name1 X1 Y1 Z1 q10 q11 q12 q13

...
...

...
...

...
...

...
...

species-namei Xi Yi Zi
...

...
...

...
...

...
...

...
species-namen Xn Yn Zn qn0 qn1 qn2 qn3

end.

Here a, b, c and α, β, γ are the crystal unit cell parameters, and nx, ny, nz are the number of unit cells in
each direction which comprise the MD cell. The next n lines describe the n molecules of the basis which
will be replicated to form the full configuration. Molecules may appear in any order, but of course the
total number of each, multiplied by the number of unit cells nxnynz must agree with that given in the
system specification file.

Each molecule is identified by its name, as given in the system specification file. X,Y and Z are
fractional co-ordinates, between 0 and 1 giving the location of the molecular centres of mass in the
crystal unit cell. The orientation is given by the four quaternions q0, q1, q2, q3 which specify a rotation
about the centre-of-mass relative to the orientation of the prototype molecule in the system specification
file. (Notice the slight inconsistency with the positions, which are of the centres of mass, not the zeroes
of co-ordinates in the system specification file. This may be fixed in future releases.) Quaternions need
only be included for polyatomic species, that is molecules 1 and n above, and omitted for the monatomic
species i.

After the molecular positions and orientations have been set up, their velocities (and angular veloc-
ities if appropriate) are initialized. Their values are sampled at random from the Maxwell-Boltzmann
distribution for the temperature T , as given by the control parameter temperature. This is done for
both starting methods.

3.3 Restarting from a Previous Run

At the end of a simulation run, it is often desirable to store the configuration of the system in a file.
This restart file may be used at a later date to continue the simulation from that point rather than
from scratch. To instruct Moldy to write a restart file, simply set the control parameter save-file to a
suitable filename; to start from a restart file, set restart-file to be the name of that file.

Each restart file is a binary file which contains enough information to reconstruct the exact state of the
system and of the program. It includes a copy of all the control parameters in force, the current timestep
number, a complete system specification, all the simulation dynamic variables and the intermediate data
used in the calculation of averages and radial distribution functions. Thus a run continued from a restart
file will proceed just as if there had been no interruption and will generate identical results (provided the
control parameters are not changed).

When continuing a simulation, it is only necessary to explicitly specify control parameters which are
to be changed. Their previous values are read from the restart file and are used as defaults when reading

26

the control file. Consequently control files for restarting tend to be rather short. Caution: always include
a new (possibly null) value for save-file. Otherwise when the new run terminates, the new restart file
may overwrite the old one.4

Neither is it necessary to repeat the system specification since that too is stored in the restart file.
However there are occasions when it is desirable to do just that, for example if the value of one of the
potential parameters is to be modified. In that case, set the switch new-sys-spec to 1 (true) and provide
a system specification as per a new simulation. This is checked for consistency with the existing one
and if correct replaces it. The following checks are applied, which only verify that it is sensible to assign
the old dynamic variables to the new system. 1. The number of species must be the same. 2. Each
species must have the same number of rotational degrees of freedom as its predecessor. It is not possible
to replace a polyatomic by a monatomic or linear molecule, for example. 3. The number of molecules of
each species must not change. This means that the order in the specification file must be identical too.
It is however possible to change the number of sites on a molecule, subject to 2.

3.3.1 Periodic Backup

Closely related to restarting is the backup mechanism. This is provided to guard against the complete
loss of a simulation due to computer failure. Periodically during a run, Moldy writes its state to a backup
file – which is in fact just a restart file. In the event of a crash, the simulation can be restarted from the
point the last backup was written rather than from the beginning. The related control parameters are
backup-file which specifies the file name and backup-interval which gives the frequency of backups.
It should not normally be necessary to change the name, but the optimum interval will depend on the
size of the simulated system and the speed of the computer. By default it is 500. At the successful end
of a run the backup file is deleted so that only if there is an abnormal termination does one remain.5

The restart from a backup is entirely automatic. If a backup file exists when a run is started, it
is read in and the run continues from it. In contrast to a normal restart all of the control parameters
are taken from the backup file and the control file (and a restart file if one is specified) is ignored.6 In
consequence, if a run is aborted or stops abnormally for some reason, the backup file must be removed
manually otherwise next time a run starts, the unwanted simulation will continue instead.

If a run terminates abnormally there may also be a lock file called MDBACKUP.lck which ought to be
removed. Moldy attempts to prevent two runs from overwriting each other’s backup files by creating a
lock file whose name is formed from the backup name by appending .lck. A second run which attempts
to use the same backup file will test for the presence of the lock file and abort the run if it finds it.

A restart or backup file is created by first writing the data to a temporary file which is then renamed
to the final name. This ensures that there is no possibility of a file being left incomplete or corrupt if the
computer crashes part-way through the write. If the file already exists either it is replaced (on systems
which only keep one version of a file) or a new version is created (on systems such as VMS which retain
multiple versions). In the unlikely event of it being necessary to change where the temporary file is kept,7

it may be specified with the control parameter temp-file.

3.3.2 Portable Restart Files

Moldy is able8 to read and write restart and dump files in a portable binary format which is transportable
between computers of different architectures. So a restart file written on, for example, a Sun may be used
to initiate a new run on a Cray, and the dump files generated on the Cray may be analyzed on the Sun.
This feature will also be of considerable use in modern heterogeneous networks where diverse machines
frequently share a common file space.

4Whether the old file is lost depends on the operating system. Under systems such as VMS which have version numbers
a new version is created and the old one remains. Under Unix, the old file is renamed by the addition of a “%” character
and thus is saved. On other systems it will be lost.

5A backup file is also written if the run is terminated for exceeding its cpu limit.
6This is not quite true. Moldy does read the control file and any restart file but only to determine the name of the

backup file. Thus even if the backup has a non-standard name it can still be found.
7This may be necessary if the restart file is located on a different device or disk partition from the current directory. To

rename the temporary file successfully, it must reside in the same partition or device as the restart file.
8From version 2.1 onwards

27

The format is based on Sun Microsystems XDR protocol[24]. The XDR routines are available on
almost every modern Unix machine, and are simple enough to implement on any other system.9 If the
control parameter xdr is set to 1 then all files will be written using this format. Moldy automatically
determines whether a restart file was written using XDR (by examining the file header) and reads it in
the appropriate fashion irrespective of the value of xdr.

3.4 Setting the Temperature

Moldy implements three different methods to control the temperature of the simulated system. These
are the velocity rescaling technique described in section 2.6.1, the Nosé-Hoover thermostat and con-
strained equations of motion (section 2.6.2). Scaling is selected by the parameters scale-interval etc.
Every scale-interval timesteps until scale-end, the velocities are adjusted so that the kinetic en-
ergy corresponds exactly to the desired temperature (the value of control parameter temperature). The
Nosé-Hoover and constrained thermostat are selected by setting const-temp equal to 1 or 2 respectively.

The control parameter scale-options selects refinements to the basic scaling or thermostat algo-
rithms. This is an integer parameter interpreted as a set of bit flags with the following meanings.

bit 0 perform scaling or thermostatting for each molecular species individually.

bit 1 scale/thermostat the rotational and translational components of the kinetic energy separately.

bit 2 use the rolling averages of kinetic energy to calculate the scale factor rather than the instantaneous
values.

bit 3 discard all existing velocities and accelerations and re-initialize from the Maxwell-Boltzmann dis-
tribution.

The bits may be set in any combination so, for example scale-options=6 sets bits 1 and 2 (6 = 21 + 22)
and scales separately for rotation/translation using the rolling averages. If bit 3 is set the others are
ignored. Only bits 0 and 1 have any meaning in the case of a thermostat, and signify that each species,
or the translational and rotational degrees of freedom are isolated from each other and coupled to their
own, individual heat baths.

The options for scaling separately rotation and translation, and per species may be useful for achieving
equilibration in “difficult” systems where mode-coupling is ineffective. In those situations it is otherwise
possible for all the energy to be transferred into the rotational modes of a particular species, halting any
progress to equilibrium for other degrees of freedom. These options ensure that all degrees of freedom
have some thermal energy.

The option controlled by bit 3, to discard all existing information and start from a random set of
velocities may be of use when starting from far-from-equilibrium situations. In such cases the forces are
frequently so large that the velocities and accelerations exceed the limits of the integration algorithm
and timestep, which results in Moldy stopping with a quaternion normalization or quaternion constraint
error. Judicious use of this option every few timesteps (using scale-interval) ought to allow the system
to relax to a state sufficiently close to equilibrium for normal scaling to take over.

Bit 2 is intended to deal with the problem of setting the temperature accurately using scaling. The
ensemble average kinetic energy which characterizes the temperature of the system and the instantaneous
value fluctuates about this value. However in the traditional implementation of scaling, velocities are
multiplied by a factor of

√
desired KE/instantaneous KE. Thus the scaling factor is “wrong” by the ratio

of the instantaneous to average KE’s which means that the temperature can not be set more accurately
than the relative size of the fluctuations in the KE. The option selected by bit 2 goes some way towards the
ideal scaling factor by using the rolling average KE instead of the instantaneous value. The fluctuations
in this short-term average should be much lower than in the instantaneous value, allowing more accurate
temperature control. However it will almost always be easier to use a true thermostat to achieve this
goal.

9Because the XDR calls are not part of ANSI standard C, however, the XDR code is conditionally compiled into Moldy
only if the USE XDR preprocessor symbol is defined during compilation.

28

Nov 17 15:13:06 1989 Water test Page 4
Trans KE Rot KE Pot Energy Tot Energy TTemp RTemp Temp h(1,*) h(2,*) h(3,*) Stress Stress Stress
======== Timestep 10 Current values ==

243.88 453.88 -187.35 533.5 305.5 568.6 424.4 12.53 0.00 0.00 589 46.4 120
22.053 0 1.0401 221.0 0.0 0.00 12.53 0.00 46.4 373 90.1

0.00 0.00 12.53 120 90.1 -207
——– Rolling averages over last 10 timesteps ————————————————————————– ————————————————

240.27 319.31 -82.472 533.39 301.0 400.0 342.9 12.53 0.00 0.00 1.2e+03 296 127
22.077 0 34.205 221.3 0.0 0.00 12.53 0.00 296 589 133

0.00 0.00 12.53 127 133 -132
——– Standard deviations ———

1.8214 71.893 56.441 .19942 2.3 90.1 43.4 0.00 0.00 0.00 1.32e+03 750 51
0.013 0 17.173 0.1 0.0 0.00 0.00 0.00 750 119 55.2

0.00 0.00 0.00 51 55.2 49

Figure 3.1: Sample Moldy output from a simulation of a two component mixture. The first component
is a polyatomic molecule and the second is atomic. There are three frames, for the instantaneous values,
the rolling averages and their associated standard deviations. Within a frame, each row has the following
meaning: for translational and rotational kinetic energies and temperatures it is the per-species value;
for the potential energy it is the direct and reciprocal space components, and the MD cell matrix, h and
the stress are laid out as 3× 3 matrices.

3.5 Output

At the beginning of each run Moldy writes a banner page containing a summary of the system being
simulated and details of the important control parameters. The bulk of the output file is the periodic
output which contains the instantaneous values of various thermodynamic variables, their rolling averages
and associated standard deviations. The rolling average is just the mean over the preceding n timesteps
where n is set by the control parameter roll-interval. An annotated example is given in figure 3.1.
The frequency of periodic output may be altered by setting the control parameter print-interval to
the interval required. (This may be necessary to constrain the size of the output file which can grow to
be very large indeed with the default interval of only 10.)

As well as the short term rolling averages, long term averages are calculated and printed out at regular
but usually infrequent intervals. Accumulation starts on the timestep given by the control parameter
begin-average and every average-interval timesteps thereafter, the means and standard deviations
are calculated and printed. This output is interspersed with the periodic output and is formatted with
one variable to a line in the form mean +/- s.d.. Where a variable has more than one component (such as
multiple species for the translational temperature or Cartesian components for the mean square forces)
the components are printed across the page.10 In addition to those variables printed as part of the periodic
output, the pressure, the virial, mean square forces, mean square torques and total dipole moments are
calculated.

3.5.1 Output units

All of the various forms of output use the same units, though for brevity they are not explicitly mentioned
on the periodic output. Lengths are measured in Å, energies are all expressed in kJ mol−1, temperatures
in Kelvin, pressure and stress in MPa, mean square forces and torques in N2 mol−1 and Nm2 mol−1,
charge in electron charges and dipole moments in Debye. Because energy is an extensive quantity the
printed values refer to the whole system. (There is no practical way of expressing energies per mole of
any particular constituent in a program capable of simulating arbitrary mixtures.)

If these units do not suit, they can be changed in the configuration file defs.h, where the conversion
from internal to output units is parameterized.

3.6 Radial Distribution Functions

Radial distribution functions are calculated by binning site pair distances periodically throughout the
simulation (see section 2.8). As this process is expensive in computer time the binning subroutine is

10Remember that the standard deviation is a measure of the fluctuations about the mean, not the uncertainty in the
mean. For that the standard error in the mean is required, which is more difficult to evaluate. Theoretically it is the s.d.
divided by

√
N where N is the number of independent observations. But successive timesteps are highly correlated and do

not count as independent. See ref [2] section 6.4, page 191 onwards for a full discussion.

29

Radial Distribution Functions Bin width=0.1

O-O RDF

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000481 0.035710 0.183334 0.442186 0.613992 1.024402

1.046396 0.964906 0.830174 0.660035 0.693341 0.615902 0.593192 0.510595 0.530697 0.532030 0.535959 0.524457 0.523221 0.466219

0.496028 0.438487 0.456500 0.410547 0.443861 0.457956 0.446822 0.452202 0.419768 0.439333 0.465509 0.486887 0.461970 0.475745

0.478883 0.480854 0.509090 0.533728 0.552747 0.552555 0.575402 0.547278 0.544836 0.493597 0.488168 0.520727 0.508073 0.479948

0.501159 0.484000 0.485378 0.489160 0.464448 0.466791 0.476508 0.446576 0.470948 0.474468 0.449340 0.462169 0.501220 0.519107

0.513338 0.510192 0.499766 0.525963 0.504663 0.517673 0.498359 0.512156 0.507061 0.466390 0.464342 0.445886 0.417555 0.407778

0.387220 0.374041

O-H RDF

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 26.976688 0.000000 0.000000 0.000000 0.000000

0.000000 0.016214 0.061257 0.304082 0.647342 0.847404 0.757188 0.601222 0.478273 0.462682 0.449614 0.450424 0.518998 0.572242

0.689704 0.914269 1.184674 1.441772 1.570390 1.609068 1.600392 1.430457 1.322722 1.183606 1.103701 1.061788 0.980018 0.960570

0.924390 0.908883 0.877591 0.857668 0.890761 0.852463 0.815447 0.824963 0.841255 0.890416 0.929030 0.960589 0.984145 1.020650

1.028199 1.047496 1.064600 1.099812 1.095715 1.073793 1.078131 1.049212 1.052160 1.052001 1.020737 1.010782 0.979748 0.983158

0.988946 0.967620 0.955655 0.944384 0.952145 0.948509 0.946692 0.960097 0.959299 0.964074 0.969219 0.972704 0.998504 1.027791

1.041576 1.037637 1.039961 1.016804 1.004726 1.026805 1.030903 1.006268 0.972421 0.948140 0.908959 0.877089 0.849855 0.817964

0.776986 0.721485

Figure 3.2: Example output of radial distribution functions. After the header line consisting of under-
scores there is an indication of the bin width b (that is the distance between points at which the RDF is
tabulated). Then for each site type pair αβ there is a line listing which pair (e.g. O-O RDF) followed by
nbins values of gαβ((i+ 1/2)b).

invoked only every few timesteps, as set by the control parameter rdf-interval (20 by default). Since
the pair distances only change a little on each timestep, very little statistical information is lost. Collection
of binning data may also be turned off during an equilibration period: specify when binning is to start by
means of the parameter begin-rdf. The parameters rdf-limit and nbins control the details of binning,
giving respectively the largest distance counted and the number of bins that interval is divided into. The
calculation of the interatomic distances is done separately from that used in the evaluation of the forces,
using the same link cell scheme. This ensures that all site pairs separated by less than rdf-limit are
included. This parameter may be varied independently of the interaction cutoff, thereby allowing RDFs
to be evaluated out to large distances without incurring the time penalty of increasing the cutoff.11

Every rdf-out timesteps (by default 5000) the RDFs are calculated from the binned distances and
printed out, and the counters are reset to zero to begin accumulation again. Distances are binned and
RDFs gαβ(r) calculated separately for each distinct type of atom-atom (or site-site) pair. An explanation
of the output format is given in figure 3.2. Note that each number should be considered as the value at
the centre of its bin, so that entry i in each list is the value of gαβ((i+ 1/2)b) where b is the bin width.

There are a couple of tricks which may be played with the system specification if the atomic pair RDFs
do not give exactly the functions required. Firstly, it is possible to calculate RDFs about a particular
site, distinguishing it from otherwise identical atoms by assigning it a new and unique site id in the
system specification file. (This is the MD equivalent of the isotopic substitution method used in neutron
diffraction). Secondly, if the molecular pair correlation is required, this is identical to the RDF of an
atom located at the molecular centre-of-mass. A “ghost” site without charge, mass or potentials may be
added if necessary.

3.7 Dumping

The dump facility is provided in order to allow the calculation of dynamic properties, such as time
correlation functions and additional static averages not normally calculated by Moldy. During a run,
dump files are produced which contain a record of the simulation dynamic variables (positions, quaternions
etc.) at varying degrees of detail. Any property of interest, dynamic or static, may then be evaluated
using the data in the dump.

A dump consists of a sequence of files since the amount of data generated in a run can be very large
indeed and it is usually more convenient to manipulate a series of smaller files rather than one large
and unwieldy one. Moldy takes considerable pains to ensure that a contiguous sequence of dump files is
maintained and also ensures that dumps from different runs are not accidentally intermixed. There is no
requirement that a dump file be produced by a single run of Moldy , which extends an existing file or

11In previous versions of Moldy the calculation of the interatomic distances was done on the basis of the “minimum
image” convention. Consequently the calculated value of gαβ(r) tailed off for rc > L/2. This restriction is now lifted

30

starts a new one as appropriate. A simulation may stop and be restarted many times without disturbing
the dump file sequence. The sequence should (in most cases) even survive a system crash and a restart
from a backup file (see section 3.3.1).

Each dump file in a sequence is a binary file consisting of a dump header, which contains information
about the contents of the file followed by a number of dump records which contain the actual data.

Several control parameters govern dumping. It starts at the timestep specified by begin-dump, and a
dump record is written every dump-interval timesteps thereafter. After ndumps dump records have been
written to a file, it is closed and another is begun. Filenames are generated from a prototype (given by the
parameter dump-file) by appending a number, so that if the prototype is MDDUMP then successive files
will be named MDDUMP0, MDDUMP1, MDDUMP2 etc. If it is not convenient for the sequence number
to appear at the end of the file, include the characters “%d” at an appropriate point.12 For example
under VMS, specifying dump-file=mddump%d.dat will name the files mddump0.dat, mddump1.dat etc.

Each dump record is a sequence of single-precision floating point binary numbers. These are written
either in native (i.e. the machine’s own) format or XDR format (see section 3.3.2) depending on the
value of the control parameter xdr. The record’s exact contents are determined by the control parameter
dump-level which is a bit flag i.e. a value of 2n means that bit n is set. Four bits are used and any
combination may be specified but the cumulative values 1, 3, 7 and 15 are most useful. A value of 0
disables dumping. The data dumped for each bit are as follows:

bit 0 centre of mass co-ordinates, quaternions, unit cell matrix and potential energy.

bit 1 centre of mass velocities, quaternion and unit cell matrix derivatives.

bit 2 centre of mass accelerations, quaternion and unit cell matrix second derivatives.

bit 3 forces, torques and stress tensor.

Items selected are written in the order laid out above. Within each set of variables, values are ordered
primarily by species in the order they appeared in the system specification. Within a species ordering is
by molecule (or atom) and at the finest level by x, y or z component (q0, . . . q3 for quaternions). Therefore
if n is the total number of molecules and nr is the number with rotational freedom the size of each record
is

3n+ 4nr + 9 + 1 (if bit 0 is set)
+ 3n+ 4nr + 9 (if bit 1 is set)
+ 3n+ 4nr + 9 (if bit 2 is set)
+ 3n+ 3nr + 9 (if bit 3 is set)

single precision floating point numbers.
The header is a copy of a struct dump t (see source file structs.h for the format). It contains the

simulation title and version number, the timestep at the beginning of the file, the control parameters
dump-interval and dump-level, the maximum and actual number of dump records in the file, a unique
marker (actually a timestamp), common to all the files in a dump run, and the timestamp13 of any restart
file used to start the run.

It is not possible to dump directly to magnetic tape. Moldy must rewind to the beginning of a file
to keep the header up to date with the number of dumps in the file, as well as extend existing files.
Neither operation is allowed on a tape drive. Large disk stores are now very cheap so this should not be
a problem in practice. If disk store is limited then the simulation may be divided into multiple Moldy
runs interspersed with copying of dump files to tape.

Notice that Moldy must sometimes read an existing but complete dump file to propagate the unique
marker to all of the files in a sequence. Therefore when continuing a simulation and a dump run, at least
the immediately preceding dump file must still be accessible. This should be borne in mind when copying
dumps to tape!

12This is actually the code sprintf(), the C library function uses to signify converting an integer to a decimal character
string. This function is used to create the actual file name from the prototype and the integer dump sequence number. (See
any C library manual for details.)

13A timestamp is simply the number of seconds elapsed since midnight on January 1, 1970.

31

Moldy is careful to ensure that existing files are not overwritten - especially necessary since dump
records are added to the end of an existing dump file. Whenever Moldy prepares to start a new dump
file it checks to see if one of that name is already present. If so, a new name is chosen by “mutating” the
old one, and a warning message to that effect is written to the output file. On the other hand, if the first
file of a new dump run (including one initiated because of some error in continuing an old one) already
exists, the prototype file name is mutated as above and the whole dump run is written to files based on
the mutated name.

When a run is restarted checks are made to ensure that the values of the dump control parameters
have not been altered. If they have, it is not possible to continue an existing dump sequence and a new
one will be started. (If existing dump files are present the new sequence will have mutated file names.)
This also happens if an existing file does not appear to be a Moldy dump. Existing dump files are also
tested to ensure that there is no corruption (due, for example to a system crash) and that they contain
the correct number of records. If the dump sequence can not be continued in these circumstances, Moldy
terminates with a fatal error rather than waste computer time.

Two utility programs included in the distribution are dumpanal which identifies dump files by printing
out the headers and dumpext which extracts atomic or molecular trajectories. The latter should be useful
as a prototype for writing programs to analyse dump data.

It is frequently convenient to perform analysis of dump data, and perhaps graphical output on a
different computer to that which generated the data. In the past it has not usually been possible to
sensibly transfer binary data between computers of different architectures. However Moldy is able to
write dump files in a portable format using XDR (see section 3.3.2) which may be read by dumpext on
any machine. The control parameter xdr enables XDR mode for dumps as well as restart files. As yet,
XDR is not available on every machine. Therefore a program called dumpconv is provided which converts
dump files to a portable text file format (which may be easily moved between machines) and back again.
It is described in appendix B.2.

3.8 Constant Stress or Pressure Simulation

The control parameter const-pressure switches from a constant-volume simulation to one of several
constant-stress or constant-pressure ensembles (see section 2.7) according to its value. Available values
are

1. The constant-stress method of Parrinello and Rahman[39].

2. A constant-pressure method which is the uniform-dilation limit of the Parrinello and Rahman
dynamics. This is convenient if switching between the two, but like P-R, the dynamics is not
modularly invariant and does not preserve the virial.

3. The improved constant-stress method of Cleveland[11] and Wentzcovitch[56].

4. The Andersen constant-pressure method[3], which is the uniform-dilation limit of Wentzcovitch
dynamics.

The value of the MD cell mass parameter, W , is given by the control parameter w and the external pressure
by pressure. Note that because of the different ficticious kinetic energy term in the Lagrangians, typical
values of W for the Wentzcovitch and Andersen ensembles are smaller by a factor of the order of L4,
where L is the MD cell edge, than those useful in the Parrinello-Rahman and compatible uniform-dilation
cases.

At present it is not possible to specify an anisotropic external stress, though this capability may be
added in future versions of the program.

The h matrix may be constrained so as to disable motion of any or all of its components using
the parameter strain-mask. Strain-mask is a bitmap: each “bit” of the integer freezes one of the
components of h; bit i freezes hkl with i = 3(k−1)+l−1. The bitmask is the sum of 2i over the i’s to be
set, so the strain-mask values

32

 1 2 4
8 16 32

64 128 256

 constrain the corresponding components of h,

 h11 h12 h13

h21 h22 h23

h31 h32 h33

 .

Thus the default constraint of h?1 = a = (ax, 0, 0),h?2 = b = (bx, by, 0) is given by strain-mask=200
(8+64+128). Another useful value is 238 which freezes all the off-diagonal components. This is needed
for a liquid simulation since there are no shear restoring forces acting on those components.

3.9 Cutoffs and Adjustable Parameters

There are four parameters related to the Ewald sum method of force evaluation (see section 2.4), α, rc,
kc, and subcell. In addition the two options strict-cutoff and surface-dipole select how rigorously
the real-space cutoff is applied and whether to include the De Leuuw surface dipole term.

By default α, rc and kc are chosen automatically, using equations 2.23 to give a default accuracy
of ε = exp(−p) = 10−5 (i.e. p = 11.5) in the Coulombic potential energy evaluation. An empirically
determined value of tR/tF = 5.5 is used. If a different accuracy is desired the cutoffs may be adjusted
using equations 2.23. The α parameter is specified by alpha in units of Å−1 and the direct and reciprocal
space cutoff distances rc and kc by cutoff and k-cutoff in units of Å and Å−1 respectively. The value
of α should only be changed after careful timing tests if the system size is large. The power-law given in
equation 2.21 gives a theoretical scaling of execution time with number of ions of T ∝ N1.5. In practise
T ∝ N1.57 has been achieved over a range of N from 72 to 7800, which is very close to optimal.

Important note: The automatically determined value of rc is chosen to converge the Coulombic
part of the potential only. Due to the very general nature of the potentials it is not possible to choose rc
automatically so as to guarantee convergence of the non-electrostatic part. Although in many cases the
automatic value will be adequate it is the user’s responsibility to ensure that it is large enough.
If there are no charges in the system specification file then rc is not set and an error message is issued.

As an example of manual determination of the parameters, for a simulation of 512 MCY water
molecules the values α = 0.3Å−1, rc = 9Å and kc = 1.9Å−1 give potential energies correct to approxi-
mately 1 part in 105. For a simulation including ions - 1.1 Molal Magnesium Chloride solution - the same
accuracy is attained with α = 0.45Å−1, rc = 9Å and kc = 3Å−1.

The Ewald sum may be disabled by setting specific values for control.alpha. The exact behaviour
is

� If control.alpha > 10−7, α is set to that value and used in the Ewald sum.

� If control.alpha = 0 then the value of α is chosen automatically as above.

� If control.alpha < 0 the reciprocal space part of the Ewald sum is not invoked, and the com-
putation of coulombic forces in the real-space sum is turned off. This happens automatically if all
charges in the system specification file are zero.

� If 0 < control.alpha < 10−7 then the reciprocal space part of the Ewald sum is not called but
coulombic interactions are included in the real-space part and truncated at rc.

The other relevant parameter is the switch surface-dipole which includes the dipole surface energy
term of De Leeuw, Perram and Smith[32]. See the note in section 2.4 for an explanation of why this term
should not be used for an ionic (as opposed to dipolar) system.

The two adjustable parameters which control the link cell force calculation (see section 2.5) are
subcell and strict-cutoff. The former specifies the length (in Å) of the side of a link cell and
determines the number of cells the MD cell is divided into. In fact the MD cell is divided into a whole
number of subcells whose side in each of the three directions is nearest to the value of subcell. (The
default of zero though, is special and sets subcell to one fifth of the cutoff radius.) In general the smaller
the link cell, the more accurately the cutoff radius is implemented, but too many of them reduces the
efficiency of the program.

33

In the default cutoff mode strict-cutoff=false the list of neighbour cells is constructed to include all
cells whose centre-centre distance is less than the cutoff. This means that some molecule pairs separated
by more than the cutoff will be included and some by less will be omitted. Setting strict-cutoff to
true generates a larger cell neighbour list which is guaranteed to include all appropriate molecule pairs.
Furthermore, molecules separated by more than the cutoff are excluded from the force calculation by
setting their separation to a large number, 100 times the cutoff, at which distance it is assumed the
potential is very close to zero. This is therefore the mode of choice for liquid simulations where any
artificial anisotropy is undesirable. See section 2.5 for a full explanation.

It is worth noting that it is unnecessary to recompile the program or change anything else when the
cutoffs are modified. Unlike most MD codes, Moldy employs dynamic array allocation and automatically
sets up arrays of the correct size (and no more!) for any given kc.

3.10 Framework Simulations

There has recently been much interest in simulations of systems of molecules interacting with some rigid
framework such as zeolites, clays and other surfaces. Moldy has the capability to include such a framework
in a simulation by defining it as a special kind of molecule.

The system specification should contain an entry, similar to that for a normal molecule, which describes
the atomic sites belonging to one MD cell’s worth of the framework. Its periodic images should fill space
to construct the required infinite framework. This is notified to the program by modifying the first line
of the specification of that molecule to read

species-namei 1 Framework
...

...
...

...
...

...
...

(compare with section 3.2.1). The effect of the special keyword framework is

1. to remove the rotational freedom of the molecule. This preserves the infinite structure over MD cell
repeats by disallowing relative motion of its parts. (Linear motion does not destroy the structure
and is allowed.)

2. to modify the effect of the periodic boundary conditions. Normally a molecule is assumed to be
“small” and periodic relocations are applied to all of its atoms depending on its centre-of-mass
co-ordinates relative to some interacting molecule. In contrast, the atoms of a framework are
independently relocated. This ensures that each molecule “sees” all framework atoms from any
unit cell which are within the cut-off distance.

In the present version of the program, only one framework molecule is allowed, though more may be
permitted in future versions. Consequently the configuration given as a lattice start must fill the entire
MD box. (A skew start is not sensible under these circumstances since the orientation of the framework
must be explicitly specified to construct a good space-filling structure.)

3.11 Messages and Errors

Apart from the periodic output, there are occasional once-off messages which Moldy writes to the usual
output file. Such messages begin with the characters *I*, *W*, *E* or *F* denoting the classes informa-
tion, warning, error or fatal respectively. Their meanings are

I information. These are often produced by subroutines to give useful information on their particular
calculations. For example when temperature scaling is turned off a message to that effect is recorded
in the output file. Various routines which calculate internal quantities such as the Ewald sum self
energies and distant potential corrections also record their values using an information message.

W warning. When the system specification is suspicious but not clearly wrong, or some untoward
condition is detected such as two atoms approaching too closely, a warning message is issued.

34

E error. Error messages are issued when a mistake is detected reading any of the input files. To make
correction easier, processing continues until the end of that file, so that all of the errors are found.
The simulation is then stopped with a fatal error.

F fatal. The simulation is terminated immediately. Faulty input files generate fatal errors after they
have been completely processed. There are many other conditions which also generate fatal errors,
for example if the simulation algorithms violate some criterion such as quaternion normalization or
constraints (see section 2), if the program runs out of memory or if a restart file can not be correctly
opened or is of the wrong format.

Most of the messages are self-explanatory. However there are two fatal errors which occasionally arise
and are somewhat cryptic:

F Quaternion n (x,x,x,x) - normalization error in beeman
and
F Quaternion n - constraint error (x)

Technically these refer to violations of the conditions that the quaternions representing the angular co-
ordinates be normalized to 1 and that equation 2.11 be satisfied. Either may occur if the angular velocity
of some molecule becomes too high for accurate integration of the equations of motion. This may have a
number of causes. First the timestep may simply be too large. Second the system may be in a state where
atoms are so close as to generate large torques which accelerate the molecule to a high angular velocity.
This commonly arises if the starting configuration is very far from equilibrium, particularly in the case of
molecules with small moments of inertia, such as methane. In most cases the simulation may be restarted
using strong rescaling or a Gaussian thermostat to limit velocities during the approach to equilibrium.
Occasionally a smaller timestep may help during equilibration. The third cause of normalization or
constraint errors is an error in the potentials or the units which allows for a state with high or infinite
negative binding energy.

Note that these messages only occur for polyatomic molecules. If the system is monatomic the errors
mentioned above may still be present but will not be detected and the simulation may fail in some less
predictable manner, for example particles may approach too closely and/or acquire high velocities and
fly off to infinity. The message

W Sites n and m closer than 0.5A.
gives some warning of this condition.

35

Chapter 4

Compiling and Modifying Moldy

The Moldy distribution consists of numerous files of “C” source code for Moldy and the utility programs,
command or job files to compile the source, LATEX input for the manual and example control and system
specification files. For ease of transport these are packed into one large archive file, whose format and
method of unpacking depends on the operating system of the target machine. At present it is available
for:

unix The archive is usually a tar archive called moldy.tar possibly compressed with the “compress” or
“gzip” programs and named moldy.tar.Z or moldy.tar.gz. These files may be uncompressed using
the “gunzip” or “uncompress” programs, viz. gunzip moldy.tar.gz or uncompress moldy.tar.Z
whereupon the archive is unpacked by the command tar xvf moldy.tar.

An alternative form of archive for those unusual systems without a “tar” program is a shell archive
— a Bourne shell script called moldy.shar. This is unpacked by /bin/sh moldy.shar.

VMS The archive is a DCL command file called moldy.com, and is unpacked by the command @moldy.

MS Windows 3/Windows 95/NT The shareware program “winzip” may be used to unpack the com-
pressed tar archive moldy.tar.gz. There is also a precompiled binary version for Windows 95/98/NT
which is available as moldy.zip. Winzip may also be used to uncompress this distribution. Two ver-
sions of each executable are provided in directories “cygwin” and “mingw”. One of these sets should
be installed in a suitable directory which should be added to the user path. The Cygwin-compiled
binaries rely on the shared library cygwin1.dll and incorporate XDR support (see section 4.1). If
Cygwin is not already installed the DLL (included) must also be installed in a suitable directory on
the system. The Mingw32-compiled executables do not require a dll and should run on any Windows
machine, but do not support the creation or reading of XDR format restart files or dumps.

MS-DOS The files must be unpacked from the tar archive on another host and transferred to the PC
by disk or ftp.

4.1 Compilation

The source code of Moldy consists of 23 files of C programs (which have suffix “.c”) and 8 header files
(suffix “.h”). To build Moldy, all of the .c files must be compiled and linked together to form an executable.
The method of doing this depends on the operating system of the target computer.

unix This version of Moldy uses the GNU autoconf system to configure for compilation. In most cases
it should be possible to do:

% ./configure
% make

The “configure” script will determine the capabilities of the compiling system and create the files
config.h and Makefile tailored to the system. It has built-in information about the compiler names

36

and optimization options (it should recognise most major workstation types)1. It should be able
to determine the characteristics of a machine unknown to it and to create Makefile and config.h
to build a working version. In that case you may need to ”hand-tune” compiler or optimization
options, which may be specified by setting the OPT and OPT2 environment variables.

You can set or change the default compiler or options by calling configure with the environment
variables CC, CPPFLAGS, CFLAGS, OPT, OPT2, LDFLAGS or LIBS defined. Any values you
supply for these will override the built-in ones. e.g.

% env CC=gcc OPT=-O1 OPT2=-O4 ./configure (c-shell)
$ CC=gcc OPT=-O1 ./configure (bourne-shell/korn-shell/bash)

OPT2 is used to compile only the most performance-critical modules and will usually select a very
high level of optimization. It should be safe to select an optimization which means “treat all function
arguments as restricted pointers which are not aliased to any other object”. OPT is used for less
performance-critical modules and may be set to a lower level of optimization than OPT2.

There is just one other option to configure, --enable-parallel which attempts to configure for
building the parallel version. The syntax is

--enable-parallel=parsys

where parsys is one of mpi bsp shmem or tcgmsg. If parsys is omitted the default is mpi. See the
section 4.1.1 on compiling for parallelism for a description of these libraries.

This is all that is required for a parallel build if the include files for the parallel system are in a
directory searched by the C compiler and the libraries can be found using -lparsys. The Cray
T3D/T3E and SGI Power Challenge and Origin 2000 systems fall into this category. Otherwise it
may be necessary to specify these by setting the environment variables CPPFLAGS and LIBS, eg:

env CPPFLAGS=-I/usr/local/mpi/include LIBS="-L/usr/local/mpi/bin -lmpi" ./configure

Some parallel systems such as the MPICH implementation of MPI from Argonne National Labora-
tories supply a compiler script called, in this case “mpicc”. If you are using MPICH it is sufficient
to do:

env CC=mpicc ./configure --enable-parallel

Configure assumes that “mpicc” invokes the system C compiler and adds the appropriate optimiza-
tion flags. Other cases where an alternate compiler specification is used are for the IBM SP2 where
the command is “mpcc” and for the Oxford bsp library which provides “bspcc”.

VMS Simply type @compile to execute the command file compile.com. This will build Moldy and the
utilities.

DOS/MS Windows 3 There is a makefile for Borland Turbo C called Makefile.mak in the standard
distribution. This must be edited to select the appropriate compiler options before executing make.2

Alternatively the programs may be built within the interactive environment. Consult the makefile
to find out which source files to link to build Moldy and the utilities. Moldy has also been built
using Watcom C.

Windows 95/98/NT The most straightforward way to build Moldy is to install one of the ports of the
GNU gcc compiler such as Cygwin or Mingw32. Cygwin provides a full unix-like environment while
Mingw32 has the advantage that the executable files do not depend on a DLL file and are therefore
more portable. On the other hand only Cygwin has support for the XDR calls to produce portable
restart and dump files (see section 3.3.2). As of version B.20, Cygwin incorporates Mingw32 which
can be selected using a command-line option.

1Since these date rapidly as vendors improve their compilers and introduce new architectures feedback from users on
appropriate options is welcome and will be included in future releases.

2Be sure to delete or rename the unix make file Makefile since Turbo C make will attempt to execute this in preference
to Makefile.mak

37

Cygwin may be downloaded from the homepage at URL http://sourceware.cygnus.com/cygwin/
and links to Mingw32 as well as general information on GNU compilers under Windows may be
found at http://www.xraylith.wisc.edu/~khan/software/gnu-win32/x86-win32-ports.html.
It is also well worth installing the additional “sunrpc” package which contains the XDR headers
and libraries needed to produce portable restart and dump files (see section 3.3.2). A binary instal-
lation for Cygwin is available from URL ftp://ftp.franken.de/pub/win32/develop/gnuwin32/
cygwin/porters/Vinschen_Corinna/B20/sunrpc-4.0.cygwin1.bin.tar.gz. There is also a source
version which might work under Mingw32, but only the binary version under Cygwin has been
tested.

The compilation procedure is exactly the same as under a unix environment – configure followed
by make. N.B. The executables so created must be run under either a Cygwin “bash” shell or a
MS-DOS window.

Moldy has also been successfully compiled using Watcom C and the development environment.
Consult the Makefile to see which objects to link to build Moldy and the utilities. It is also possible
that the Borland C Makefile.mak will work under Borland C for Windows 95 or NT3.

4.1.1 Parallel Version (Message Passing)

The parallel version of Moldy relies on an interface with a suitable message-passing library. This is
the recommended version and supersedes the “shared-memory” parallel implementation described in
section 4.1.2. The current release contains interfaces to the MPI library[17], the TCGMSG library
and the Oxford BSP library. MPI is the most recommended interface since it is the new standard for
message-passing libraries, and should become ubiquitous. If none of these are installed on your machine,
some public-domain implementations are available for workstation clusters, multiprocessors and many
distributed-memory parallel machines.

MPI The MPICH implementation can be downloaded by anonymous ftp from the URL
ftp://info.mcs.anl.gov/pub/mpi/mpich.tar.gz and with other information at
http://www.mcs.anl.gov/mpi/index.html.

The CHIMP implementation can be downloaded by anonymous ftp from
ftp://ftp.epcc.ed.ac.uk/pub/chimp/release/chimp.tar.Z

TCGMSG This may be obtained by anonymous ftp from
ftp://ftp.tcg.anl.gov/pub/tcgmsg/tcgmsg.4.04.tar.Z

BSP The Oxford BSP Library is available through Oxford Parallel’s WWW server
http://www.BSP-Worldwide.org/implmnts/oxtool.html or by anonymous ftp
ftp://ftp.comlab.ox.ac.uk/pub/Packages/BSP/v1.3_bsplib_toolset.tar.gz.

SHMEM The CRI native communications library for T3D and T3E systems.

Alternatively a port to another parallel interface should be quite straightforward, see section 4.3.2.
Once a suitable message-passing library is installed the procedure for building Moldy is as described

in section 4.1.
On a non unix-like system the configuration must be done “by hand” using whatever build mechanism

is available. The C preprocessor macro SPMD must be defined as well as one of MPI, TCGMSG, BSP or SHMEM.
This is usually done in the makefile by setting the Make macro PARLIBC=-DSPMD -DMPI, for example.
This macro should also include a -I directive specifying the directory for the library’s header files if these
are not in the default path searched by the compiler. The similar make macro PARLIBL should contain the
linker directives necessary to link to the library itself. Examples are provided at the top of the supplied
Makefile.

This parallel implementation makes use of the replicated data approach[50] whereby every processor
has a complete copy of all the arrays containing dynamical variables and every site on every molecule.

3The author’s experience of Windows 3 and Windows 95 platforms is somewhat limited. I would very much welcome
any reports from users on how to build Moldy in these environments for inclusion in future versions of this manual.

38

http://sourceware.cygnus.com/cygwin/
http://www.xraylith.wisc.edu/~khan/software/gnu-win32/x86-win32-ports.html
ftp://ftp.franken.de/pub/win32/develop/gnuwin32/cygwin/porters/Vinschen_Corinna/B20/sunrpc-4.0.cygwin1.bin.tar.gz
ftp://ftp.franken.de/pub/win32/develop/gnuwin32/cygwin/porters/Vinschen_Corinna/B20/sunrpc-4.0.cygwin1.bin.tar.gz
ftp://info.mcs.anl.gov/pub/mpi/mpich.tar.gz
http://www.mcs.anl.gov/mpi/index.html
ftp://ftp.epcc.ed.ac.uk/pub/chimp/release/chimp.tar.Z
ftp://ftp.tcg.anl.gov/pub/tcgmsg/tcgmsg.4.04.tar.Z
http://www.BSP-Worldwide.org/implmnts/oxtool.html
ftp://ftp.comlab.ox.ac.uk/pub/Packages/BSP/v1.3_bsplib_toolset.tar.gz

The computation of the real-space potential and forces is distributed over processors on the basis of link
cells. For the reciprocal-space part of the Ewald sum, the k -vectors are distributed among processors.
This is an extremely efficient way of implementing parallelism since the forces etc. must be summed over
processors only once per timestep, thus minimizing interprocessor communication costs. It is therefore
possible to get considerable speedup for a small number of workstations coupled by a fast network such
as an Ethernet.

The biggest disadvantage of the replicated data strategy is that every processor must maintain a copy
of all of the data, and therefore that the memory requirement per processor increases with the size of the
system. In many cases this is not a severe problem, as MD memory requirements are not large compared
with memory sizes of modern computers. However the poor scaling will eventually limit the number of
processors which may be used. On a shared-memory multiprocessor, the alternative parallel version in
section 4.1.2 may provide a solution, if it can be ported to that machine.

The memory limitation will be most acute when the goal is to simulate an extremely large system
on a massively parallel distributed-memory computer where it is desirable to scale the system size with
the number of processors. In such architectures the available memory per processor is usually a constant
independent of the number of processors. But the memory needed per processor increases with system
size. Mostly the scaling is linear, but the reciprocal-space sum uses temporary arrays whose size scales
with the product of the number of sites and k -vectors, and hence to the 3

2

th power of the system size.
An alternative version of ewald.c which implements the reciprocal-space term of the Ewald sum by

distributing over sites rather than k -vectors is included in the distribution as ewald-RIL.c. It is based
on the RIL algorithm of Smith [51] and distributes the temporary arrays containing the cos(k · ri)
and sin(k · ri) over the nodes. In other words, each node only stores the terms involving the ri’s
to be considered on that node. Since these arrays are by far the largest users of memory there is a
substantial decrease in overall memory requirement. Moreover the size per node now scales linearly
with the number of k -vectors and therefore (assuming α is optimized), to the two-thirds power of the
number of sites. These arrays will not therefore dominate the memory requirement in the limit of large
numbers of processors and system size. The disadvantage of the RIL scheme is that the partial sums of
cos(k ·ri) and sin(k ·ri) must be summed over nodes separately for each k -vector. Though the amount of
data transferred each time is small, the communication and inter-processor synchronization is far more
frequent than for the RKL scheme and the parallelism becomes very fine-grained. The upshot is that only
machines with very low communications latency can run this version effectively. Practical tests show that
the communications overhead completely negate any parallel gain on systems of networked workstations
and most multiprocessors. However a significant speedup is obtained on a Cray T3D, which is exactly
the case where this version is needed.

4.1.2 Shared-Memory Parallel Version

An alternative parallel version is available for shared-memory multiprocessors with “parallelizing” com-
pilers. This relies on the compiler handling the multi-threading, synchronization and allocation of local
memory stacks for inner function calls. It requires compiler-specific directives to be inserted in the code
and is therefore less portable than the distributed-memory version of the previous section. (Note that
that version works on this class of machines too under the message-passing interface.) Nevertheless, it
works and has been run on Stardent, Convex and Cray computers. It consists of replacements for files
force.c and ewald.c called force parallel.c and ewald parallel.c. Then the program should be compiled with
the preprocessor macro PARALLEL defined (not SPMD).

The distributed-memory parallel version (section 4.1.1) is generally recommended over this one. How-
ever because the parallel sections reference a single global copy of most of the arrays, the shared-memory
version uses much less memory. This version may therefore be of use if memory limits the size of the
system on a multiprocessor machine.

4.2 Portability

A major goal in writing Moldy was that it be as portable as possible between different computers and
operating systems. It is written in the Kernighan and Ritchie[27] compatible subset of ANSI C and

39

assumes the library calls and header files defined for a hosted implementation of the standard. It should
therefore be possible to compile and run Moldy on any computer which has a good C compiler.

The “configure” script immensely eases portability on unix-like systems by detecting the capabilities
of the compiler and the installed header files and library functions. The details are given below for
completeness or in case of a configure failure or for a system where “configure” does not work.

Though hosted ANSI standard C environments are now commonly available it may still be necessary
to compile Moldy using a pre-ANSI compiler. Replacement ANSI library functions are supplied in ansi.c
for the VMS and unix operating systems. For ease of portability all other system-dependent functions are
in the module auxil.c and all preprocessor conditionals are in the header file defs.h. If the target machine
has ANSI conformant C libraries, all that must be done is to define the preprocessor symbol ANSI LIBS,
either in defs.h or by using a compiler option e.g. -DANSI LIBS.

4.2.1 System Dependencies

In this section, details of system-dependent functions are described for the major operating systems.

Replacement ANSI header files The ANSI header files string.h, stdlib.h, stddef.h and time.h are miss-
ing from Berkeley unix, or incomplete. Replacements are included which may be dispensed with on
an ANSI conformant system - If the symbol ANSI LIBS is defined they simply include the system
version.

Replacements for ANSI functions

� The ANSI function to delete a file, remove(), the signalling function raise() and the string
functions strstr() and strerror() are missing from pre-ANSI libraries. Replacements are
supplied in ansi.c.

� Replacements are provided in ansi.c for functions memset(), memcpy() and strchr() which
are missing from Berkeley UNIX.

� The function vprintf() is often absent from older libraries. Replacements are provided which
a) call the internal function doprnt() or b) implements a portable vprintf(). Use the
preprocessor macros HAVE VPRINTF or HAVE DOPRNT to select which.

Timing routines The supplied clock() function on some 32-bit UNIX systems resets to zero after 36
minutes. Replacements, called cpu() for system V and Berkeley UNIXes and POSIX are supplied
in auxil.c. The function rt clock() is also defined and returns the elapsed time in seconds. For a
non-unix system cpu() and rt clock() simply call the ANSI functions clock() and time().

File manipulation routines Auxil.c contains the functions replace() and purge(). replace() re-
names a file, making a backup of any existing file of that name. purge() removes the previous or
backup version of a file. These functions make use of the file name syntax of the host operating
system and are therefore system-dependent. Unix file systems do not have explicit version numbers
but Moldy keeps a single previous version by appending a “%” character to the name. The pure
ANSI versions just interface to rename() and do nothing respectively.

4.2.2 Optimization and Vectorization

Moldy has been designed to run fast on a wide range of computers, and in particular on those with vector,
multiprocessor and parallel architectures. This is a difficult problem, since the constructs which run fast
on different architectures may be quite distinct and occasionally in conflict. Nonetheless, it has been
found that following a few basic rules gives extremely good performance on a wide range of computer
architectures. In a rough order of importance these are:

1. Minimize the number of memory references to floating point data in critical loops. Memory access
is the major bottleneck on almost every modern computer, scalar, vector or parallel.

2. Minimize the number of memory references to floating point data in critical loops. This cannot be
emphasized enough.

40

3. Ensure that memory is accessed contiguously within critical loops. That is, arrays should be
accessed with a stride of 1 and with the last index varying most rapidly.4 This is absolutely critical
on machines where memory is accessed via a cache, i.e. all workstations and many parallel systems,
and frequently very important on machines with interleaved memory (i.e. most vector machines).

4. If the value of any array element is used more than once in a loop, write the loop using temporary
scalars to store results and assign them to the arrays at the end of the loop. This allows the compiler
to optimize memory references.5

5. Minimize the floating-point operation count in critical loops.

6. Minimize integer arithmetic in critical code. CRAY vector machines in particular have no integer
multiplication hardware, and integer operations are slow as a result.

The performance of Moldy has been carefully studied using profiling tools, and all critical regions of
code are written as efficiently vectorizable loops.

The most critical sections of code (i.e. those which use the majority of the computer time) are all
to do with the site forces calculation. Thus it is the inner loops in force.c, ewald.c and kernel.c to which
most attention should be paid. The pair-distance loop of rdf calc() in rdf.c should vectorize for efficient
radial distribution function evaluation. Others which are of minor importance are in beeman.c, matrix.c,
quaterns.c and algorith.c. Auxil.c contains alternative versions of various sum, dot product, scatter and
gather routines etc. which are interfaces to machine-specific libraries e.g. Cray scilib, Convex veclib
(which usually have FORTRAN calling conventions). There are also default versions coded in C which
do vectorize, for machines lacking specialist libraries as well as for scalar computers.

4.2.3 Optimization for Vector Architectures

The program should, of course, be compiled with options specifying vectorization. Since highly optimizing
and vectorizing compilers frequently contain bugs, and since some options generate “unsafe” optimiza-
tions, it may be necessary to restrict the highest optimization level to those modules which contain critical
code.

To allow the compiler to generate vector code, it must be instructed to ignore apparent vector re-
currences. The reason is that the run-time dimensioned arrays necessary to implement such a flexible
program must use pointers as their base. (See any C textbook, e.g. Kernighan and Ritchie[28, Chapter
5] for an explanation of C pointers and arrays.) Unfortunately this means that the compiler can not
determine that each iteration of the loop is independent of the preceding iterations. In the jargon of
vectorizing compilers, there may be a vector dependency or recurrence. The compiler can be notified that
these are not genuine recurrences either globally by use of a command-line directive or on a per-loop
basis using machine-specific compiler directives inserted into the source.

Most compilers also have an option which directs it to ignore recurrences throughout the whole
program, e.g. -va on the Convex, -va and -h ivdep on the Cray compilers. It should normally be safe
to use these options. Each manufacturer’s compiler has its own peculiar set of inline directives. For
example the CRAY compilers use a #pragma ivdep statement whereas the convex and Stellar compilers
use a “significant comment” /*$dir no recurrence*/.6

4C uses the opposite convention to FORTRAN in storage layout of multidimensional arrays
5Technically, the C standard treats arrays passed as formal function parameters as pointers which are permitted to refer

to overlapping areas of memory. The compiler must therefore assume that if an array element is written in a loop then
elements of any other arrays may also be changed. It must therefore reload from memory even though it already has a copy
of the value in a register. But if all loads are completed before any stores then the compiler is at liberty to re-use the values
and save memory accesses.

6A mechanism is provided to insert appropriate directives using the C preprocessor. The text VECTORIZE has been placed
before each loop which ought to be vectorized, and the file defs.h contains machine-conditional #defines to replace it with
the appropriate directive. Currently directives for the CRAY, Stellar and Convex compilers are included, and null text is
substituted for other machines. Notice that in each case the substituted text is not the directive described in the manual,
but rather that directive after it has been passed through the preprocessor. To determine what should be substituted on a
new vector machine, create a small test containing the documented directive and use the C preprocessor on that file. The
output will show the form that should be defined in defs.h.

Unfortunately this method had been made obsolete by the ANSI C standard, which makes it impossible to insert pragmas
using the preprocessor.

41

4.3 Modifying Moldy

4.3.1 Adding a New Potential

By default Moldy supports potential functions of the Lennard-Jones, six-exp and MCY forms. However
it should be very easy to add further types. The program is written in a highly modular fashion so that
the only code which need be altered is in file kernel.c (and occasionally in defs.h).

The calculation of the potential and forces is performed entirely in the function kernel(). This
function is called repeatedly with a vector of (squared) distances between some reference site and its
neighbour sites. Vectors of potential parameters and charges are supplied which bear a one to one corre-
spondence with the elements of the distance vector. It calculates the corresponding values of − 1

rij

dU(rij)
drij

which it stores in forceij[]. There are several variants of the force-calculation loop, one for each kind
of potential. The potential type in use is passed as a parameter to kernel() and is used in a switch
statement to select the appropriate code.

To add a new potential the following modifications must be perfomed:

� The array of structs called potspec[] must be extended. The new array element should contain
the name of the new potential in all lowercase7 and the number of potential parameters for each
site pair.8 The name of a potential type given in system specification files will be matched against
this name after being converted to lowercase.

� In parallel with potspec[], the array pot dim[] must also be updated with a new entry which
describes the dimensions of each parameter for the new potential. This array is used by the in-
put routines to convert from the input units into program units. Each entry consists of triplets,
one triplet per parameter, containing the powers of mass, length and time corresponding to the
dimensionality of that parameter.

� Define a new preprocessor symbol (after the line #define MCYPOT 2) to an integer which will be
used as the index of the new type in the arrays and to select the code in the case statement. The
value must correspond to the index of the new entry in potspec[] starting from 0 in accordance
with the usual C convention.

� This constant should be used as the label to a new case in the switch statement of kernel(),
and this is where the code to evaluate the potential goes. The existing cases may be used as
a model, especially for the evaluation of the electrostatic term erfc(αr)/r which is evaluated by
the polynomial expansion of Abramowitz and Stegun[1, section 7.1.26]. There are currently two
versions of each loop, the second omitting this term for efficiency when all the electric charges are
zero (which case is flagged by a negative value of α).

� Finally, the distant potential correction for the new potential should be added as a new case to
function dist pot(). The code should evaluate

−
∫ ∞
rc

r2U(r) dr

for the potential U(r).

4.3.2 Porting the Parallel Version

It should be relatively straightforward to port the distributed-memory parallel version to a new message-
passing library. Section 5.4.1 describes the parallel implementation. All of the interface code is contained
in parallel.c and it will only be necessary to modify this file. A new port should declare a new preprocessor
macro along the lines of MPI etc. which should be used to conditionally compile its code only. Any header

7Potential names in system specification files are converted to lowercase before being compared with potspec[], so it is
impossible to match a name containing uppercase letters.

8By default the arrays are sized for up to seven parameters. If this is not sufficient, the limit, set by the value of the
constant NPOTP defined in defs.h may be increased.

42

files may be included in the appropriate place in parallel.c. Then the interface functions should be written
to call the underlying message passing library. These should again be conditionally compiled. It should be
obvious where to place them in the file and the existing versions will provide a model. Their specifications
are:

par sigintreset(void) Moldy sets a handler for SIGINT. This function is called from the signal handler
to restore the default.

par begin(int *argc, char ***argv, int *ithread, int *nthreads) Initialize the library and re-
turn the number of processes and the ID of this process.

par finish(void) Terminate the parallel run normally.

par abort(int code) Terminate the run abnormally. Return code if possible.

par broadcast(void *buf, int n, size mt size, int ifrom) Broadcast the specified buffer from
node ifrom to all nodes.

par {r,d,i}sum(void *buf, int n) Perform a global parallel sum reduction on the buffer containing n
reals,9 doubles or ints.

par imax(int *idat) Perform a global maximum reduction on the single int argument.

The SPMD parallel strategy updates the dynamic variables independently on all processors (see sec-
tion 5.4.1). To update the separate copies of the co-ordinates and other dynamic variables synchronously
the results of the floating-point arithmetic must be identical. Therefore the result returned by par rsum
and par dsum must be identical to the last bit on all processors: see the footnote on page 59. Another
consequence is that execution on heterogeneous workstation networks is not supported - the identity of
floating-point operations in not guaranteed even if all use IEEE arithmetic. Moldy periodically tests for
divergence of trajectories and will exit with the message

F Trajectories on parallel threads are diverging.
if this condition is detected.

9real is a typedef defined in defs.h which is set either to float or double (see section 5.1.1). The code for par rsum()

must handle either case, which may be tested using the sizeof operator. For example the preprocessor macro #define

M REAL (sizeof(real)==sizeof(double)?MPI DOUBLE:MPI FLOAT) is used to determine which constant to pass to the MPI
sum function.

43

Chapter 5

Program Structure

The source of Moldy consists of 31 different C source files amounting to 167 functions and 9000 lines
of code. A complete and detailed description would be a compendious volume of questionable value.
Instead, much of the detailed documentation is contained in the source code in the form of comments.
This chapter concentrates on describing the organization of the calculation and the data structures used
throughout the code, describes some of the more complicated and less obvious algorithms and provides
call graphs and brief function descriptions to act as a map of the program structure.

Moldy is written in modular fashion in adherence to the principles of structured programming to
as great a degree as practical. This does not mean merely the avoidance of gotos but, instead the
organization of the program into modules and functions which are independent of each other and of
global environmental variables. Functions are kept to a limited size and as far as practical serve a single,
well defined purpose.1 This ensures that the internal workings of a function are unaffected by changes
elsewhere in the program, and do not have any influence on any other part of it, except through the
defined interface. In Moldy functions are grouped into different files according to a rough classification
of their purpose.

The other primary consideration in the design of a large computer program is the provision and
organization of storage for the data. Structured programming advocates that definitions of data objects
be restricted as closely as possible to the code that uses them, and that the code be organized in a
modular fashion to encourage data locality. This minimizes the risk of a programming error in one part
of the code modifying a variable used in a completely different part and producing difficult-to-locate side
effects. With two exceptions,2 global data is avoided in Moldy and all arrays are passed as function
arguments where necessary. Heavy use is made of C structures (or “structs”) to further group related
data so that it may be manipulated in toto.

5.1 Data Structures

5.1.1 Types and Typedefs

A number of derived types are defined in the header file defs.h for reasons of economy of expression,
portability and ease of customization. Most of these derived types are named using a suffix mt to mark
them as such. These are

real This is the “standard precision” floating-point type used for all the dynamic variables and most other
internal variables. It is set to double by default. Changing this to float will give a single-precision
version of Moldy with a consequent memory saving. However additional work must be done to
create a fully single-precision version, since the standard double-precision maths library will still
be used. The C standard does not require a single-precision maths library, but most systems do

1The term “function” in C corresponds to both functions and subroutines in FORTRAN.
2These are the struct control (section 5.1.3) and the integers ithread and nthreads holding the parallelization param-

eters (section 5.4.3).

44

make the functions available. However there is no standardization of the interface so this can not
be done portably.

boolean Used for storing logical values. Typed to int.

gptr Generic pointer type, set to void in the case of ANSI C. Pre-ANSI compilers do not support void
so char is used instead.

time mt This is used to store integer format times and dates as returned by the time() function. It is
declared as unsigned long and is used because pre-ANSI compiling systems may not define the
time t type for this purpose.

size mt Used for storage of C object sizes as returned by sizeof. Like time mt this would be unnecessary
if we were guaranteed an ANSI C compilation system.

vec mt Array of 3 reals for holding a vector type.

quat mt Array of four reals for holding a quaternion type.

mat mt 3× 3 array of reals for storing a matrix.

5.1.2 Memory Management

The allocation of memory for storage of the multitude of data required in a molecular-dynamics simulation
is one of the main design criteria of the code. The general nature of the systems to be accepted by
Moldy, namely the arbitrary mixtures of molecules with different numbers and kinds of atoms requires a
number of large multidimensional arrays with system-dependent bounds in more than one dimension. It
is impractical to declare these statically with dimensions fixed at some suitably large value because total
memory use would then be infeasibly large. The availability of standard, portable, dynamic memory
allocation was one of the major reasons the author chose to write Moldy in C.3 Moldy uses C’s capability
of array emulation by pointers and heap-based memory allocation[28] rather than true C arrays which,
like FORTRAN’s, are restricted to bounds fixed at compile-time.

Much of the dynamic memory used in Moldy is allocated on entry to a function and deallocated before
exit to emulate local, variably-dimensioned arrays. The main exceptions are the arrays of dynamical
variables which are allocated once during the startup phase and not freed until program exit. All dynamic
memory is allocated using the function talloc() which is a wrapper around the standard library function
malloc(). Function talloc() simply calls malloc(), tests the return value and calls an error exit
function if it failed to allocate the memory requested. Its interface takes advantage of the C preprocessor
macros LINE and FILE to print out the location of a failing call, and a wrapping macro aalloc() is
provided in defs.h for this purpose. This also contains other xalloc() macros customized for various data
types. The complementary function tfree() calls the library function free() but also allows tracing of
allocation and freeing for debugging purposes. All of Moldy ’s memory-management functions are in the
source file alloc.c.

Like FORTRAN, C only permits the declaration of arrays of size fixed at compile time. Unlike
FORTRAN, C lacks any method of declaring arrays with adjustable innermost dimensions as function
formal parameters. However through the use of pointer — array mapping and dynamic memory allocation,
variable-sized multidimensional arrays may be emulated[28, p107],[44, pp 20–23]. Multidimensional array
emulation is done by the function arralloc() (see Figure 5.1). This takes the size of the atomic data-
type, the number of dimensions and the lower and upper bounds for each dimension as arguments and
returns a pointer to the allocated pseudo-array. This is an array of pointers (to an array of pointers to
. . .) to the data area. The C mapping of array notation onto pointer syntax allows this construct to be
referenced exactly as if it was a true multidimensional array. For example

3At the time Moldy was being planned in 1988 C was the only widely available language offering dynamic memory
allocation. Fortran 90, which also offers dynamically declared arrays was standardized in 1991 and compilers only became
common in the mid-nineties.

45

r r[i] r[i][j]

(pointer) (array of m pointers) (m arrays of n data objects)

1 2 n-2

0

1

m-2

0 n-3 n-1

m-1

Figure 5.1: Storage layout of a 2-dimensional pointer-based pseudo-array. The base pointer r is of type
“pointer to pointer to double” and declared double **r. This points at a 1-dimensional array with
length m of pointers, which in turn point to the m rows of data arrays. This structure contains all
the information needed to access element r[i][j] using pointer indirection rather than an indexing
computation and therefore without any reference to the values of m or n. Higher dimensional arrays are
set out in a similar fashion with more levels of pointer arrays, n− 1 for an n-dimensional array

double **r;
r = arralloc(sizeof(double), 2, 0, m-1, 0, n-1);

defines a 2D array, m × n of double so that r[i][j] is a reference to the i, j th element in the usual
manner. This pseudo-array may be passed directly to a function, e.g.

double doit(r, i, j)
double **r;
int i, j;
{

r[i][j] = 0.0;
}

since the underlying pointer arrays contain all the necessary information to access indivual elements.
Function arralloc() is implemented so as to lay out the individual pointer and data arrays as part of a
single block of memory which is allocated by a single call to talloc(). It then sets up the values of the
pointers to emulate the requested array. The memory can be freed with a single call to tfree().

The arralloc() mechanism is unnecessary for 2D arrays where the innermost dimensions are fixed,
such as for an array of position co-ordinates which has dimensions [n][3]. In such cases one of the
xalloc() macros is used to allocate an array with fixed innermost dimensions and whose type is a
pointer to a fixed-size array double (*x)[3] rather than a pointer to a pointer double **x.

There is one important instance of a more sophisticated use of arrays of pointers; the allocation of
the atomic-site, site-force, centre-of-mass force and torque arrays in the main timestep loop function
do step(). These syntactically resemble 3D arrays declared, e.g. site[nspecies][nsites][3] but
because the number of sites differs between molecular species they do not map onto “rectangular” 3D
arrays. However the “array of pointers” construct does allow for rows of different lengths and this is
easily set up. These pseudo-arrays can again be passed straightforwardly as function arguments and used

46

with the obvious and intuitive indexing scheme at the cost of a little extra code to allocate and initialize
the pointers.

5.1.3 System Variables and Data Structures

Moldy makes consistent use of C language structures or “structs” to combine related pieces of data into
a single variable. This may then be passed as a single function argument avoiding long and cumbersome
argument lists and the consequent risk of programming error. All of the major struct types used in this
way are defined in the header file structs.h where each type is carefully annotated with the meaning of
its members.

The struct control is shared between almost all modules in the program using external linkage.4 It
contains the values of the parameters from the control file — the exact mapping is defined by the array
(of structs) match[] declared in source file startup.c. The values are read from the control file by function
read control() in source file input.c and adjusted by start up() in startup.c where the timestep-related
parameters are updated and the floating-point values are transformed into program units. These are the
only functions which alter values in control.

Most of the information needed to describe the system is stored in the struct system and the array of
structs species[]. Struct system contains counters to record the total numbers of species (nspecies),
atomic sites (nsites), molecules (nmols), polyatomic molecules5 (nmols r) and pointers to the arrays
of dynamical variables. Its counterpart species[] is a dynamically allocated array, length nspecies,
of structs of type spec mt which contains individual data for each molecular or atomic species. This
includes the mass, moments of inertia, dipole moment, and charge, the number of sites belonging to this
species and the number of molecules. It also contains pointers to the array of site identification numbers,
and Cartesian site co-ordinates (expressed in the molecular principal frame) for this species and also to
the arrays of dynamical variables.

The dynamical variables are stored in dynamically-allocated arrays of total length nmols and nmols r
which may be regarded as the concatenation of individual arrays containing variables belonging to each
molecular species. The pointers in species[i] locate the beginning of the array of variables belonging
to species i and those in system to the beginning of the entire array. The variables are manipulated by
either route as is most convenient (but never both within a single function).

The potential parameters are stored separately in the array potpar since they refer to pairs of site
types (site-id’s). This is an array of structs of type pot mt, laid out as a 2-dimensional symmetric matrix
of dimension system.max id with rows and columns indexed by the site identifiers as given in the system
specification file. In fact it is stored in a one-dimensional array of length (system.max id)2 and the index
calculation is performed explicitly when it is referenced. Structure type pot mt contains an array p for
the actual parameter values. This is a fixed-length array with NPOTP members, where the constant NPOTP
is defined in the header file defs.h. If a new potential with more than 7 parameters is to be added to
Moldy it will be necessary to increase its value.

The above primary storage of the potential parameters is convenient for reading in and storing and
rereading restart files. However it can not be indexed efficiently to retrieve the potential parameter
values in the critical innermost loops. The data is therefore copied into an expanded 3-dimensional array
potp[max id][NPOTP][nsites] in the force evaluation function forces() before being used. The masses
and charges of the various sites are stored in another array of structs site info[], simply indexed by
the site identifier. As with the potential parameters this is not convenient for access within the inner
force loop, so the data are expanded in do step() to fill an array chg[nsites] to allow direct indexing
by the loop counter.

The two final data structures of importance are those containing accumulated data for computing
the usual averages and the radial distribution functions. Both databases are considered private to their
respective source modules values.c and rdf.c and are only accessed using the function interfaces provided
in those modules.

The averages database provides a general and extensible scheme for storing partial sums and com-
puting rolling- and time- averages of instantaneous values such as temperature, kinetic energy etc. It

4This is analogous to a COMMON block in FORTRAN.
5strictly speaking molecules with rotational degrees of freedom.

47

consists of two parts, a linear array av[] of structs of type av mt (defined in values.c) and an array of
classified types of data which contains pointers to av[], the numbers of components, and to format strings
and units conversion factors for output formatting and printing. This is the compile-time struct array
av info[], again defined in values.c. To compute averages of a different quantity a new entry should be
added to the array av info, and another corresponding enum type to enum av n in defs.h. The storage,
retrieval and averages computation functions will then recognize the new type and may be called from
within values() and averages().

The array av itself is set up using the “struct hack” to allocate space for the rolling average data.
The structure type av mt contains as its final entry an array with one element roll[1]. When storage
for av is allocated, the amount requested is calculated as if the member array was declared roll[n]
with n equal to the rolling-average interval. The array member roll[] may then be used as if it had n
members. This does mean that the array av can not be simply indexed using pointer arithmetic or array
subscripting since the compiler’s notion of the size of a pointer of type av mt * is wrong. It is instead
accessed solely via the pointers contained in array av info. The general functions add average() etc. in
values.c provide the means to store and retrieve values and compute averages. The function av ptr() is
provided to make the size and base address of the averages database available to the restart file reading
and writing functions in restart.c.

Radial distribution functions are calculated between all pairs of site types (defined by the site identifier
given in the system specification file). Storage for the accumulating binned pair distances is provided
by a 3D pseudo-array rdf[idi][idj][bin] with two indices for the site identifiers of the pair and one
for the bin. This does not have the geometry of a true 3D array but is set up by function init rdf()
to economise on memory by making rdf[idi][idj][bin] an alias for rdf[idj][idi][bin]. Both the
pointers and the actual data area are of course dynamically allocated. The latter is in a single block
of memory whose address is stored in rdf base so that it may be easily stored in and retrieved from a
restart file. The function rdf ptr() is provided to make the size and base address of the RDF database
available to the restart file reading and writing functions in restart.c.

5.2 Files and Functions

5.2.1 Source Files

The source files consist of 8 “.h” header files and 23 “.c” code files which contain functions grouped in
a modular fashion. A detailed description of the purpose and interface to each function is given in the
source code in the form of comments, which should be regarded as the primary documentation for the
function. An annotated list of files follows.

structs.h Definitions of structure types used throughout the program.

defs.h Main Moldy header file to be included in all “.c” files. It contains machine and operating-system
configuration macros., physical constants, unit definitions and global (non-structure) type defini-
tions.

string.h, time.h, stddef.h, stdlib.h These files are replacements for the ANSI C library header files of the
same name, included here for portability to pre-ANSI environments.

messages.h Error messages file containing messages in the form of preprocessor macros. This may allow
for non-English language customization.

xdr.h Includes the system headers for the usual External Data Representation (XDR) functions and pro-
totypes of additional functions for XDR reading and writing of Moldy–specific structure types.

accel.c Contains do step(), which implements the major part of the main MD timestep procedure plus
functions for velocity rescaling and thermostatting.

algorith.c Contains functions to implement algorithms and computations related to the dynamical equa-
tions of motion. This includes the computation of molecular centre-of-mass forces, torques, the

48

Newton-Euler equations and the constant–stress and –temperature functions. These functions all
have an interface which makes no reference to the system or species[] structs.

alloc.c Contains functions for memory management; allocation, (talloc()) freeing (tfree()) and setting
up of pointer-based multi-dimensional arrays (arralloc()).

ansi.c Replacements for certain functions required in any ANSI C standard library but missing from pre-
ANSI environments.

auxil.c Machine- and OS-dependent support functions. Contains (a) Fast vector arithmetic functions,
including interface to various vector libraries as well as pure “C” versions. (b) OS-dependent time
and file manipulation functions.

beeman.c Functions implementing the separate stages of the modified Beeman algorithm, including basic
steps and the updating of all the necessary dynamical variables.

convert.c Functions for converting the potential parameters and control file parameters from input units
to program units and vice versa.

dump.c Functions for managing periodic trajectory etc. dumps.

ewald.c Evaluates the reciprocal-space part of the Ewald sum for the long-ranged Coulombic forces.

force.c Implements the calculation of the short-ranged forces and the real-space part of the Ewald sum
using the Link Cell algorithm. This excludes the actual evaluation of the potential which is contained
in kernel() in kernel.c.

input.c Functions for reading the control and system specification files and allocating the structures to
hold the data read in from them.

eigens.c Matrix diagonalizer from the netlib archive.

kernel.c Contains kernel() which actually evaluates the potential given a vector of pair distances.

main.c Function main() is the main program which controls the set up and contains the main MD timestep
loop that calls do step() to do most of the work of a timestep.

matrix.c Functions for manipulating 3× 3 matrices and applying to 3× n arrays of co-ordinates etc.

output.c Main output functions responsible for regular output sent to main output file. Also contains
error-handling function message() which may terminate simulation.

parallel.c Interface between Moldy and various parallel message-passing libraries. Also contains functions
to copy Moldy ’s data structures from the input/output node to other nodes using the parallel
interface.

quaterns.c Functions for manipulating arrays of quaternions.

rdf.c Contains init rdf() which sets up RDF database, rdf accum() which periodically bins pair dis-
tances and rdf out() which calculates and prints all the radial distribution functions.

restart.c Functions for reading and writing the restart and backup files.

startup.c Primary initialization function start up() plus subsidiary functions allocate dynamics() to
create dynamic variable arrays and initialise sysdef to compute molecular and whole-system
properties. Also contains functions to create initial configuration for system.

values.c Function init averages() allocates and sets up pointers to averages database. Other functions
store and retrieve instantaneous values of thermodynamic quantities and compute the averages
thereof.

xdr.c Functions to read and write Moldy ’s own struct types using the External Data Representation (XDR)
library.

49

restart?
Y

N

exist?

Y
Abort

N

backup
file exists?

Y

Y

N

N

A

B

C

start up()

Create backup &
dump lock files

get saved params

get new params

to ”input” units

to prog units

dump
/backup lockfiles

re re header()

conv control()

read control()

conv control()

default control()

read control()

conv control()

D

banner page()
write output file

return

restart?

Functions called by start up()
default control() Initialize struct control with

default parameter values.

read control() Read parameters from control file
and store in struct control.

convert control() Convert physical values in
control between input and program units.

read sysdef() Read the system specification file.
Allocate storage for arrays species, site info

and potpar and copy in values from file.

initialise sysdef() Finish set up of system and
species structs.

allocate dynamics() Allocate memory for the
dynamic variable arrays and set up pointers in
system and species

skew start() Set up skew-cyclic initial state.

lattice start() Read crystal structure and set
up co-ordinates, quaternions and cell vectors.

init cutoffs() Determine optimum parameters
for Ewald sum.

re re header() Read the restart header and
control structs from the restart file.

re re sysdef() Read the system specification
(structs/arrays system, species, site info

and potpar) from the restart file.

read restart() Read dynamic variables and the
RDF and averages databases from the restart
file.

check sysdef() Check new system specification is
consistent with old.

thermalise() Set up Maxwell-Boltzmann velocity
distribution

init rdf() Prepare to bin RDFs. Allocate
memory and pointers

init averages() Allocate space for and initialize
the averages database.

convert averages() Update averages database if
roll interval changed or if old-style restart file.

conv potentials() Convert potential params
between “input” and “program” units.

Figure 5.2(a): Block diagram of the initialization function start up() and a list of the functions called.
Continued in Figure 5.2(b).

5.3 Flow of Control

5.3.1 Input and Initialization

The initialization and input file reading stage of Moldy is rather more complicated than is usual in a
molecular-dynamics simulation program because

� of the use of dynamic data structures. The size of the arrays required can only be determined after
the input files have been partially read in, but they must be allocated before the read is complete.
Thus reading of input files and array allocation must be interspersed.

� of the general nature of the systems Moldy is able to simulate. Many structures that might otherwise
be hard-coded must here be read from the input files and set up dynamically.

50

allocate
dynamics()

initialise
sysdef() allocate

dynamics()

allocate
dynamics()

initialise
sysdef()

A B C

D

D

read sysdef()

lattice start?
YN

init averages()

conv potentials()

init averages()

thermalise()

lattice start()skew start()

init rdf()

init cutoffs()

re re header()

re re sysdef()

init rdf()

read restart()

Adjust timestep-

parameters
related control

from sys-spec file

from backup

from backup

convert averages()

from backup

D

replace
system spec?

Y

N

Y

N

interpolate
derivatives()

re re sysdef()

init averages()

init rdf()

read restart()

read sysdef()

check sysdef()

from sys-spec file

from restart file

abort if failed

dyamic vars etc.

conv potentials()

timestep
changed?

convert averages()

Figure 5.2(b): Block diagram of the initialization function start up() and a list of the functions called.
Continued from Figure 5.2(a). The paths beginning at A, B and C are for a new run, a restart from a
save file, and a restart from a backup file respectively.

� Moldy has three different modes of start-up; an initial run, a restart and a backup restart. The use
of the stored values of the control parameters as defaults on a restart run is an added complication.

� the ability to specify the input units the potential parameters are expressed in requires the appro-
priate conversion to be performed at start-up.

Initialization is controlled by function start up() which is called directly from main(). It calls
subsidiary functions to read the control and system specification, restart or backup files. It controls the
allocation of dynamic memory for the system description and potential and dynamic variable arrays,
and the RDF and averages databases. It oversees the computation of quantities derived from the input
parameters and system specification and generally transforms the input data from a form useful for human
preparation to one useful for machine computation. Figures 5.2(a) and 5.2(b) show a block diagram of

51

start up() and a brief description of the functions it calls.
Parameters are read from the control file by read control() which assigns their values to the cor-

responding member of struct control. The default values were previously set by default control().
In the case of a restart the saved parameters in the restart file are restored to control by function
re re header(), overwriting all of the current values. In this way the saved values become the defaults
for a second call of read control() which rereads the control file and assigns any new values. The
repeated read is necessary because the name of the restart file is supplied by the control file. Note
that those parameters representing physical quantities must be converted to and fro between input and
program units for consistency since they are stored in program units in the restart file.

The three alternative routes within start up() for reading the system specification and initializing
the dynamic variables etc. are shown in Figure 5.2(b). The case of a new run is reasonably straightfor-
ward. Memory for the “system specification” arrays species[], potpar[] and site info[] is allocated
as the system specification is read in by read sysdef(). The raw atomic site co-ordinates are then
shifted to the molecular centre-of-mass frame and rotated to the principal frame of the inertia tensor by
initialise sysdef(), which also computes a number of other molecular quantities and completes the
set up of the system specification. Next the dynamic-variable arrays are allocated and initialized and
finally the RDF and averages databases are installed.

If the run is a restart then those control parameters whose value is interpreted relative to the current
timestep (see section 3.1) must have its value added to theirs. This is only done if the parameter was ex-
plicitly specified in the new control file, otherwise its saved value is untouched. Function re re sysdef()
reads the system specification variables and arrays system, species[], potpar[] and site info[] from
the restart file. These were stored in their final form after being set up by the previous run so a call to
initialise sysdef() is unnecessary. Alternatively a new system specification file may be used in which
case a similar sequence to that for a new run is followed. Memory for the dynamic variable arrays and the
RDF and averages databases must be allocated before their saved values are restored by read restart().

The simplest startup mode is that from a backup file. Once it has been determined that a backup file
exists, setup proceeds much as in the restart case except that the parameters and system specification
are restored unchanged. Thus the run continues exactly from the point the backup file was written. A
restart file is still opened, but only to obtain the name of a backup file to search for.

The final act of start up() is to call banner page() to print out a nicely formatted page of infor-
mation to record the simulation details in the output file. Control is then transferred back to the main
program where everything is now ready for the molecular dynamics to begin.

5.3.2 Main timestep loop

The initial entry point into Moldy is into function main(), which calls start up() (section 5.3.1) and then
proceeds into the main loop over molecular-dynamics timesteps (Figure 5.3). This loop calls do step()
which computes the forces and advances the co-ordinates, velocities and their angular counterparts by
one timestep. Most of the periodic tasks not directly associated with progressing the simulation, such as
the accumulation of running averages, velocity rescaling and writing the output files are called directly
from main(). The exceptions are the binning of site-pair distances for computing the radial distribution
functions which is integrated into the site forces evaluation, and the writing of trajectory data to the
dump file which is called from do step() since the force arrays are local to that function.

The timestep loop continues until either the requested number of steps have been completed, a
SIGTERM or SIGXCPU signal is received or one more step would exceed the CPU time limit set in
control.cpu limit. Only the normal termination case is shown in Figure 5.3. In the case of an early
termination write restart() is called to write out a backup file so the simulation may be restarted later.
The signal handling functions shutdown() for SIGTERM and SIGXCPU and siglock() for other signals are
installed in main() following the call to start up(). Function shutdown() simply sets a flag which is
checked at the end of every iteration of the timestep loop. This allows for an orderly shutdown if the
CPU limit is exceeded or if the run must be interrupted for some other reason. For conditions which
require immediate program exit, function siglock() is called to delete the lock files before exiting.

The tasks of calculating the forces, implementing the equations of motion and updating the dynamic
variables each timestep are managed by function do step(). The conceptually simple calculation of

52

loop

onoff

start up()

rdf inner()

dump()

do step()

values()

print interval

scale interval

text mode save

dump interval

output()

rescale()

averages()

print rdf()

print config()

exit()

write restart()

every

every

every

every

steps

steps

steps

every

every
rdf out

steps

steps

calc/print RDFs

scale velocities

write save file

calc/print averages

link-cell RDF calc

write trajectories

write text restart

write backup file

log thermo. values

Step co-ords by dt

input/initialization

periodic write

main()

istep
over timesteps

force calc()

bin pair distances
rdf accum()

average interval

steps
backup interval write restart()

Figure 5.3: The main timestep loop in file main.c showing the outermost control structures. Periodic
analysis, trajectory dump or output tasks are all shown here including the accumulation of the radial
distribution function data which is integrated into the link cell force calculation.

forces and stepping of co-ordinates is made lengthy and less transparent by the need to handle the rigid-
molecule equations of motion and the constant-pressure and -temperature extended system equations.
The procedure is set out in figures 5.4(a) and 5.4(b). The main stages of the calculation are

a. update all of the centre-of-mass co-ordinates, quaternions and extended-system variables according
to steps i and ii of equations 2.13. This is done by function step 1() which also applies the
quaternion normalization and constraints of equations 2.6 and 2.11.

b. call force calc() and ewald() to evaluate the potential energy and the forces on all atomic sites.
The site co-ordinates must themselves be computed from the centre-of mass co-ordinates and the
quaternions by function make sites().

53

Calculation of molecular
centre-of-mass forces
and torques.

first call?

Allocate arrays
for sites and
site forces

Set up array of
site charges

step 1()

Calc. distant
pot’l & pressure
correction

make sites()
Calc. site co-ords.

ewald()

recip-space forces

Y

N

N

Y

force calc()

coulomb forces?

surface-dipole

Y

N

A

mol torque()

newton()

mol force()

any
polyatomics?

molecular virial
correction term.

last timestep in
”old” arrays etc.

Y

N

rahman()

beeman 2()

Apply Beeman steps i, ii to

(b)

real-space forces

need

switch on? forces & energy.
Get surf. dipole

(c)

Get C of M forces.

Get torques.

Store acc’s from

Get atomic,

Const stress?

(d)

New C of M acc’s

(a)

Step cell velocities

Get unit cell acc’s

Calculation of atomic
site forces and
potential energy.

update dynamic variables

do step()

Y

N

energy dyad()
kinetic stress term

Figure 5.4(a): Flow diagram of function do step() which performs a single timestep. (continued in
Figure 5.4(b))

54

(f)
derivatives using Beeman
Iteratively update quatern

step iv.

(e) Iteratative loop to step
C of M velocities using
Beeman step iv.

N

Y

Thermostat ?
None

Gaussian

Nose-Hoover

gtherm()

N

beeman 2()

euler()

hoover rot()

Y

step 2()

return

beeman 2()

nhtherm()

Predict N-H ζ

Get N-H ζ̇

Calc. gaussian ζ

quatern

converged?
derivatives

Apply Beeman step iv to
dynamic var derivatives

step quatern derivs

Get torque corr.

Calc angular accs

dump interval
every

steps

(g)

dump()
write trajectories,

forces etc.

A

N

Y

const-stress
or thermostat?

simulation?

Thermostat ?
None

Gaussian

Nose-Hoover
nhtherm()

hoover tr()

gtherm() beeman 2()

beeman 2()

converged?
velocities N

Const stress parinello()

Get N-H ζ̇

Step N-H ζGet gaussian ζ

Get P&R acc corr.

step C of M vels

Calc N-H acc corr.

Y

any
polyatomics?

Figure 5.4(b): Flow diagram of function do step() which performs a single timestep. (continued from
Figure 5.4(a))

55

c. calculate the molecular centre-of-mass forces and torques using equations 2.1 and 2.2 which are
implemented in functions mol force() and mol torque(). At this point the accelerations from the
previous timestep are “shuffled down” from the acc, qddot etc. arrays in system and species[]
to acco, qddoto to make way for the new accelerations computed in this timestep.

d. calculate the internal stress (equation 2.34) and the “accelerations” of the MD cell matrix from the
Parrinello-Rahman equations of motion. Function rahman() implements equation 2.33.

e. calculate the new centre-of-mass and extended-system variable accelerations including the velocity-
dependent parts which arise in a constant-pressure or -temperature calculation. Iterate steps iii–v
of equations 2.13 until the velocities have converged.

f. calculate the new angular and rotational thermostat accelerations. The Euler equations (2.4) and
equation 2.10 are used by function euler() to evaluate the second time-derivatives of the molecular
quaternions. Iterate until the corresponding angular velocities have converged.

g. call step 2() to apply the final step iv of equations 2.13.

h. write requested co-ordinates etc. to the dump file.

The loops of steps e and f iterate until the molecular centre-of-mass velocities and quaternion time
derivatives have adequately converged (in practice about 3 or 4 iterations). No additional iteration is
applied to converge the extended-system dynamic variables, since in any practical system these should
be very slowly-varying compared to molecular motion and any error introduced will be very small.

5.3.3 The Site-Forces Calculation

The evaluation of the forces on atomic sites comprises almost all of the run-time of any reasonably sized
simulation — over 95% for systems of only a few hundred atoms. Efficiency of execution is therefore a
primary consideration in this part of the code. It is frequently the case that a straightforward implemen-
tation of an algorithm is not optimally fast, which regrettably means that the optimized code is not as
transparent to read as for other, less critical parts of the program.

The link cell algorithm for the short-ranged part of the forces (section 2.5) is one which scales very
well to large systems. In its original form [45] the MD cell is divided into a number of “subcells” and a
linked-list structure [30] lists the molecules or atoms belonging to each subcell. The inner loops of the
force calculation must therefore use an indirect indexing operation to obtain the co-ordinates on every
iteration: the index of a molecule on each iteration depends on the index of the previous iteration. This
kind of loop is inherently un-vectorizable which grossly limits the efficiency on vector computers.

To overcome this limitation a further step is needed, as suggested by Heyes and Smith [22]. Inside the
loop over subcells, the linked list is pre-scanned and used to construct an array containing the indices of
the molecules in the list. This is known as the neighbour list since it points to the molecules in the region
of the subcell under consideration. The co-ordinates are then assembled into a contiguous array using
a gather operation. The inner force loop then becomes a straightforward DO loop over this temporary
array which is vectorizable. In addition to the co-ordinates, a corresponding gather operation using the
same neighbour list operates on the electric charge and potential parameter arrays. The corresponding
temporary arrays are also accessed in the inner loop over neighbour sites with a single array subscript.
Finally the computed forces are added to the main site force arrays using a scatter operation, inverse to
the gather.

Although this algorithm was designed for vector machines, it is also highly efficient on modern RISC
processors which universally employ a cache-based memory architecture. Since adjacent iterations of the
inner loop access adjacent locations in memory, loading a cache line will bring the operands of the next
few iterations into cache. Otherwise a (very slow) cache load would be necessary on every loop iteration.

The link cell functions are all in force.c (figure 5.5). The outer-level function is force calc(). Func-
tion neighbour list() constructs a list of subcells within the cutoff radius of a reference cell. By adding
an offset and applying periodic boundary conditions this list yields the neighbour cells of any subcell.
This should not be confused with the neighbour sites list above. In fact the list contains only a hemi-
sphere of cells since Newton’s third law is exploited to halve the computational cost. A more rigorous

56

Y

N

force inner()

return

return

kernel()

site neighbour list()

Print warning.

on neighbour list.

site approaches
test for close

loop over

range of current cell.

Build list of all sites within

loop- over all cells

Distribute neighbour list

on sites in neighbour list.

vectors into neighbour lists
Gather site co-ords reloc,

Gather potential params

into neighbour list arrays.

Calculate squared pair site
distances in neighbour list.

Evaluate potential & force

Calculate stress & forces

forces onto force array.

Create list of neighbouring cells.

force()

neighbour list()

Y

N

Set up arrays of
P.B.C. relocation
vectors.

site neighbour list()Y

N

Allocate and fill

of pot’l params.
expanded array

fill cells()
Build linked list
of mols in cells

strict cutoff?

in cell
molecules and sites

changed.
cell size/shape

first call or

force inner()

Figure 5.5: The Link-Cell short-range force calculation

list may be computed instead by strict neighbour list() which is selected in strict cutoff mode (see
section 2.5.3). Next an array of potential parameters called potp is constructed. This has an innermost
dimension of the number of sites, which maps one-to-one onto the co-ordinates array. It will be used as
the argument of the gather operation using the site neighbour list. Function fill cells() constructs
the linked list of molecules in each subcell.

The loops over cells are all contained in force inner(). Within the loop over subcells the neighbour
list of sites for this cell is constructed from the list of neighbour cells by site neighbour list(). This
list is then used as the index array to gather the co-ordinates, charges, potential parameters and any
periodic boundary vectors. The innermost loops compute the site pair distances, the potential and the
forces on the neighbour list sites. The actual potential and scalar-force evaluation is delegated to function
kernel() for ease of comprehension and modification. This takes as its arguments an array of squared
pair distances and corresponding arrays of potential parameters and site charges and returns the potential

57

Set up sin k · ri and
cos k · ri arrays for
k = 0,a∗,b∗, c∗

k = ha∗, kb∗, lc∗
Get sin, cos k · ri for

using recursion

Calc. pre-factors
for energy, force

for this k and all sites i
Evaluate sin and cos k · ri

qsincos()

and energy term
Eval. struct. factor

Eval. forces on all
sites & add to total

ewald()

terms

Calculate self-
and sheet-energyfirst call?

k -vectors
loop over

Precompute list of
h, k, l for k -vectors
within cutoff

return

Figure 5.6: Evaluation of the reciprocal-space parts of the ewald sum

energy and an array containing the scalar part of the force, φ′(rij)/rij . The structure of kernel() is
designed to evaluate all the different kinds of potential functions (see section 2.3.3) as efficiently as
possible. It contains separate versions of a vector loop for each distinct potential type, both with and
without electrostatic charges. For the charged case, the complementary error function is approximated to
an accuracy of approximately 1 part in 10−6 by the formula given in Abramowitz and Stegun[1, section
7.1.26].

Pair distances for the calculation of radial distribution functions are evaluated by rdf inner() whose
structure resembles a simplified force inner(). It does not call kernel() or compute forces but instead
calls rdf accum() which bins the computed pair distances. The separate function allows the use of a
larger cutoff than for the force and potential evaluation.

The reciprocal-space part of the Ewald sum is evaluated in function ewald(), shown in figure 5.6.
This is a fairly straightforward implementation of the k -space terms of equations 2.19, 2.20 and 2.24, and
differs from common implementations only in the respect that it must correctly handle parallelepiped-
shaped MD cells and therefore a triclinic grid of k -vectors. A list of vectors satisfying k > 0 and |k| < kc
is pre-computed to simplify the control condition of the main k -vector loop.

Again, computational efficiency dictates much of the structure of ewald(). The values of cos(k · ri)
and sin(k ·ri) must be computed for every site i and every vector k = ha∗+kb∗+ lc∗ with |k| < kc. Since
the cosine and sine functions are relatively expensive to evaluate, the values of cos(ha∗ · ri), cos(kb∗ · ri)

58

etc. are precomputed for each site i and h = 0, 1, . . . hmax, k = 0, 1, . . . kmax and stored in arrays of
dimension [hmax][nsites] etc. Then within the loop over k -vectors the trigonometric addition formulae
are used to construct qi cos(k · ri) and qi sin(k · ri) using only arithmetic operations. That task is
delegated to function qsincos() since certain compilers can optimize it better that way. The self-energy
and charged-system terms of equations 2.19 and 2.24 are also evaluated in ewald().

5.4 Parallelization

It has been predicted since the early 1980s that parallel computers would offer the very highest perfor-
mance for scientific computing. That vision has been somewhat slow in coming about, in part due to the
difficulty of writing programs to explicitly exploit unique and idiosyncratic architectures and the lack of
portability or re-usability of the resulting code. It was often necessary to write programs in machine-
specific languages [41, 7], use proprietary and obscure library calls [10] and be designed around a specific
communications topology. Nevertheless molecular-dynamics simulation was one of the earliest applica-
tions of parallel computers and many simulations have been undertaken despite the difficulties [41, 10, 46].

The emergence and widespread adoption of the single-program multiple-data (SPMD) programming
model and the standardization of parallel communications libraries in the 1990s has much improved the
situation. In this model a parallel program is treated as a set of copies of a single program executing
asynchronously and independently on different processors and which communicate using library calls. The
program is written in a standard language and arranged to divide the calculation among the processors
in some way so that each handles a subset of the operations. The model is completed by the addition of
a library of communications routines which allow the separate parts of the calculation to be assembled
to give the full, desired result. A significant advance was the availability of parallel libraries such as
TCGMSG [21], PVM [18], BSP [34] and the new standard MPI [17]. Together these developments
allow a program to be both parallel and sufficiently independent of architectural details to be portable
to a wide range of parallel environments. These may include shared-memory and distributed-memory
multiprocessors, and even networks of workstations.

Of course formal portability is no guarantee of good performance on hardware with widely differing
processor and communications performance. That is a function of the granularity of the problem with
respect to communications latency and volume of data with respect to communications bandwidth. Both
of these depend on the nature of the problem and the parallelization strategy.

5.4.1 Parallel Strategy

Moldy uses the “replicated data” approach to parallel molecular dynamics [10, 50] whereby each processor
maintains a complete set of dynamical variable arrays for all particles. The short-ranged and reciprocal-
space force calculations are divided among the processors and a global sum operation is used to add the
separate contributions to the forces and propagate a copy of the complete force array to every processor.
This “parallel” part of the calculation dominates the execution time and shows a close to linear speed-
up. It takes over 95% of the CPU time even for quite small systems of a few hundred particles. The
remainder of the calculation, in particular the integration of the equations of motion is not parallelized but
is performed redundantly on every processor simultaneously.6 This “serial” part of the code will therefore
limit the parallel speedup on large numbers of processors by Amdahl’s law. However this part of the
computational work only grows as N compared with N

3
2 for the forces calculation (see section 2.4.1).

Consequently the “serial” part becomes an increasingly insignificant fraction of the computation as the
system size increases. Since one might reasonably expect that in practice N is scaled with the number
of processors the serial part does not seriously limit the parallel performance.

6It is essential that the particle co-ordinates are identical on every processor and remain so throughout the simulation
run. Since the equations of motion are chaotic the tiniest numerical difference in the forces between processors will cause
the trajectories to diverge. It is not difficult to arrange that a global sum returns results identical to the last decimal place
on all processors and this is guaranteed by the BSP, and cray SHMEM implementations and strongly recommended by the
MPI standard. Moldy relies on this behaviour to ensure that no divergence occurs. If this were not the case it would be
necessary to add a step to synchronize the co-ordinates periodically. This may also be an issue for running on networks of
workstations - it is assumed that the numerical properties of all the processors are identical. The equality of the separate
copies of the co-ordinates is checked periodically and the simulation exits if divergence is detected.

59

The advantages of the replicated data strategy are firstly simplicity of programming. Most of the
code is identical to the serial program which greatly eases maintenance. Secondly load-balancing is much
more straightforward than with domain decomposition methods. This will be discussed below. Thirdly
the communications granularity is coarse, consisting of one global summation per timestep. This makes
it very suitable for loosely-coupled processors such as a workstation cluster where the communications
latency is high. Finally it is very efficient for small and medium-sized systems.

The big disadvantage is that the scaling to very large numbers of processors is poor, which will
eventually limit the size of system which can be simulated. This is because both the amount of memory
used per processor and the total amount of data to be communicated per processor increase linearly
with N , the number of particles in the system. However in comparison with other supercomputing
applications, molecular dynamics simulation uses relatively little memory and most supercomputers can
easily accommodate simulations of many thousands of particles. Though scaling to multi-million particle
systems would be desirable, most practical simulations of solids or liquids can be accomplished using
systems of a few tens of thousands of particles or fewer.

5.4.2 Implementation

Two of the design goals are that the serial and parallel versions of Moldy can be built from the same
code, and that the code is easily portable to a number of communications libraries. The C preprocessor
macro SPMD is used to conditionally include the parallel code. All calls to the parallel library interface are
protected by conditional-compilation and if SPMD is undefined at compile time then the serial version is
built. These calls are limited to a very few modules — main.c for the parallel set-up, do step() in accel.c
for the global summation of the forces, virial and potential energy and message() in output.c for error
handling. Furthermore the communications library is not called directly, but through interface functions
defined in file parallel.c (these are listed in section 4.3.2). This means that only parallel.c need ever be
modified if a port to a different communications library is needed, as the rest of the code sees a common
interface. As supplied parallel.c contains implementations for the MPI library, the TCGMSG library, the
Oxford BSP library and the Cray SHMEM library for the T3D/T3E series machines (see section 4.1.1).
One of these is selected by conditional compilation of parallel.c with one of the preprocessor symbols MPI,
TCGMSG, BSP or SHMEM defined.

5.4.3 Input/Output and startup

Since each processor runs an identical copy of the program executable, steps must be taken to ensure
that input and output are handled by a single processor. Otherwise a parallel run would print P copies of
every line if running on P processors. Indeed there are some parallel systems on which only one processor
is allowed to perform input or output. It follows that all parts of the code which perform I/O must be
aware of which processor this instance is running on. This is done using a global integer variable, ithread
which contains the index (or “rank”) of the processor. Another variable nthreads contains the value of
P. These are set up in function par begin() called from main() and passed by external linkage to every
module which needs them. Processor 0 performs all input/output, which is arranged by testing ithread
prior to any I/O call, e.g.

if(ithread == 0 && control.istep % control.print interval == 0)
output();

which is the code in main() used to print the regular output. These variables are also present in the
serial code, where they are harmlessly redundant. In that case ithread is always set to 0 and nthreads
to 1.

Parallel.c also contains the function replicate() to pass the system specification and dynamical
variables from processor 0 to all of the others. This is called from main() after start up() has returned.
It allocates memory for the system specification and dynamical variables on all other processors using
the same functions as start up() itself and calls copy sysdef() and copy dynamics() to broadcast the
data from processor 0 to all of the others. The function par broadcast() defined earlier in parallel.c calls

60

the underlying communications library to broadcast the data globally. On exit from replicate() every
processor now contains a complete set of data and is ready to begin the run.

Error or warning conditions are handled by function message() in output.c if called with the FATAL
or WARNING flags set in its argument list. In the serial case this prints out a failure message and calls
exit() to terminate the run. In a parallel run, an error condition may occur on just one processor or on
all simultaneously depending on precisely what caused the problem. Furthermore, if just one processor
is involved, it may not be the I/O processor (rank 0). The approach of printing the message only from
processor 0 is inadequate since there would be no indication that something has gone wrong. But neither
is it appropriate to print on all, since that would result in a multiplicity of messages in some cases. The
approach taken is that message() always prints the error irrespective of which processor is executing
it, but that calls to message() are made conditional on ithread == 0 for those conditions known to
occur on all processors simultaneously. If the condition signalled was FATAL then message() finally calls
par abort() which terminates the run on all processors.

5.4.4 Distributed forces calculation

The two parts of the forces calculation which must be parallelized are the short-ranged forces calculation
and the reciprocal-space part of the Ewald sum. The outermost loop of the link cell forces calculation
in function force inner() runs over all subcells within the simulation cell (see figure 5.5). In the serial
case, it has the form

for(icell = 0; icell < nx*ny*nz; icell++)
{

[Evaluate forces on particles in cell icell]
}.

The iterations of this loop are distributed over processors by rewriting it as

for(icell = ithread; icell < nx*ny*nz; icell += nthreads)
{

[Evaluate forces on particles in cell icell]
}.

where the integer variables ithread and nthreads contain the rank of the processor and the total number
of processors respectively. Since ithread has a different value on each processor, the separate copies of
the force arrays contain only the contributions from the set of subcells assigned to that processor. After
completion of the forces calculation the individual arrays are summed in function do step(). Similar
partial contributions to the potential energy and the stress are also globally summed. Provided that the
number of subcells is rather greater than the number of processors and the number of particles per subcell
is fairly constant, this algorithm automatically ensures that the computation is divided evenly between
the processors.

The reciprocal-space sum may be parallelized either by distributing the loop over k -vectors over
processors [10, 51] or by partitioning the particles between processors. Smith [51] called the former
strategy the “reduced k-vector list” (RKL) method and the latter the “reduced ion list” (RIL) method.
Moldy contains implementations of both methods. In the RKL method, it is necessary to pre-compute
a list of k -vectors within the cutoff sphere (see figure 5.6) which is stored in the array hkl[]. (Each
element of hkl[] is a struct containing the values of h, k, l and the vector components of k.) The loop
over k -vectors then takes the form of a single loop over this list, which is easily sliced over processors
exactly as the loop over subcells above.

for(phkl = hkl+ithread; phkl < hkl+nhkl; phkl += nthreads)
{

[Compute the contribution of k-vector in phkl]
}.

At the end of this loop the force arrays contain the contributions to the force on each site from the

61

particular set of k -vectors handled by that processor. The total forces are obtained by globally summing
these arrays over processors. In fact since the same arrays are used to store both the short-ranged and
long-ranged contributions to the force then only one global sum is needed for the forces. Since the
contribution at each k -point is a sum of fixed length and takes exactly the same time to evaluate as any
other, this algorithm is always optimally load-balanced.

There is also an implementation of the alternative, RIL parallelization strategy in file ewald-RIL.c,
which is a direct replacement for ewald.c. In this case each processor handles a subset of the particles
and all k -vectors. This involves an extra global sum within the loop over k -vectors to evaluate the total
structure-factor for each k.

5.4.5 Radial Distribution Functions

The accumulation of distances for the radial distribution function calculation is potentially costly since
it is a site-pair property. It is therefore handled using the parallel link cell method exactly as for the site
forces calculation by functions rdf inner() and rdf accum(). However the contributions from different
processors do not need to be summed every time rdf inner() is called, but may be left to accumulate
separately. The data is globally summed by function par isum() only when rdf out() is called to
calculate and print the RDFs or just before a restart file is written.

62

Appendix A

Example System Specifications

A.1 Argon

LJ Argon - about as simple as you can get
Parameters from Allen and Tildesley Table 1.1
Argon 108
1 0 0 0 39.948 0 Ar
end
Lennard-Jones
1 1 3.984 3.41

A.2 TIPS2 Water

This is the four-site water model of Jorgensen[25]. Only the oxygen site interacts via the Lennard-Jones
potential, and the charge site, M, is displaced 0.15Å from the Oxygen.

Modified TIPS2 water
Water 64
1 0 0 0 16 0 O
2 0.7569503 0 -0.5858822 1 0.535 H
2 -0.7569503 0 -0.5858822
3 0 0 -0.15 0 -1.07 M
end
lennard-jones
1 1 0.51799 3.2407
end

A.3 Aqueous MgCl2 Solution

This is a three-component system consisting of MCY water[33], magnesium and chloride ions. The Mg2+

potential was fitted to the SCF calculations of Dietz and Heinzinger[12] and the Cl− to the calculations of
Kistenmacher, Popkie and Clementi[29]. Note that the potential parameters are expressed in kcal mol−1,
and the control file must set the parameter time-unit=4.8888213e-14.

MCY Water/ Mg2+ / Cl - solution
Water 200
1 0 0 0 16 0 O
2 0.7569503 0 -0.5858822 1 0.717484 H
2 -0.7569503 0 -0.5858822
3 0 0 -0.2677 0 -1.434968 M

63

Magnesium 4
4 0 0 0 24.31 2 Mg2+
Chloride 8
5 0 0 0 35.45 -1 Cl-
end
MCY
1 1 1088213.2 5.152712 0 0
1 2 1455.427 2.961895 273.5954 2.233264
2 2 666.3373 2.760844 0 0
1 4 47750.0 3.836 546.3 1.253 # New values of Mg potl
2 4 111.0 1.06 0 1.0
1 5 198855.0 3.910 0 0
2 5 1857.0 2.408 77.94 1.369
4 5 28325.5 2.65 0 0
end

A.4 Quartz

Quartz parameters from Van Beest, Kramer and Van Santen
Physical Review Letters 64,(16) p1955 (1990)
Units are eV, A, el chg. so time-unit=1.0181e-14
Oxygen 384
1 0 0 0 16 -1.2 O
Silicon 192
2 0 0 0 28.0855 2.4 Si
end
buckingham
1 1 175.0000 1388.7730 2.76000
1 2 133.5381 18003.7572 4.87318
2 2 0.0 0.0 0.0
end
4.903 4.903 5.393 90 90 120 4 4 4
Oxygen 0.415000 0.272000 0.120000
Oxygen 0.857000 0.5850000 0.453300
Oxygen 0.728000 0.143000 0.453300
Oxygen 0.143000 0.728000 0.880000
Oxygen 0.272000 0.415000 0.546700
Oxygen 0.5850000 0.857000 0.213300
Silicon 0.465000 0 0
Silicon 0.535000 0.535000 0.333300
Silicon 0 0.465000 0.666700
end

64

Appendix B

Utility Programs

Twelve utility programs are included in the Moldy package, mostly for manipulation and analysis of
dump data (see section 3.7). They are easily compiled on unix systems using the makefile: the command
is “make progname” for each program or “make utilities” to make the lot. They are written with unix
systems in mind using unix-style option arguments, but ought to compile and run under VMS if defined
as foreign commands.

Several of them require you to specify lists of (integer) numbers, for example selected molecules,
timeslices etc., which share a common syntax for such options. The numbers 1, 5, 17 to 20 inclusive
and 34,44,54. . . 94 are selected by the command-line argument -t 1,5,17-20,34-100:10. Selectors are
separated by commas and each one may be a range separated by a hyphen with an optional increment
following a colon.

B.1 Dumpanal

Dumpanal examines the dump files given as arguments and prints out the header information to help
with identification. For example

dumpanal dump-file1 dump-file2 . . .

B.2 Dumpconv

Dumpconv is a tool for moving binary dump files between computers of different architectures. It has
mostly been superseded by the portable XDR format dump files introduced in version 2.1 (see sec-
tion 3.3.2) but is retained in case of machines for which no XDR implementation is available. The
command

dumpconv binary-dump-file text-dump-file

creates a straightforward ASCII text file with a representation of the dump information in the binary file
including the header. The command

dumpconv -d text-dump-file binary-dump-file

converts it back. Seven significant decimals are used which ought to retain almost all of the precision of
the single precision binary floating-point numbers. You can also convert an old “native” format dump
into XDR format using the -x option, viz

dumpconv -x native-dump-file xdr-dump-file.

The -x and -d options may be combined if the input is a text format dump.

65

B.3 Dumpext

Dumps are designed so that Moldy can take care of all the bookkeeping, perform data security checks and
to divide a lot of data into manageable portions. It is therefore not in a convenient form for reading by
other programs, especially FORTRAN ones. Dumpext is a program which processes dump files, extracts
a subset of the information and outputs it in a form more suitable for reading by other programs. It is
invoked with the command:

dumpext -R nmols -Q nquats -c components [-t timeslices]
[-m molecules] [-o output-file] [-b] dump-file1 dump-file2 . . .

The meanings of its arguments are

-R the total number of molecules. This argument is compulsory.
-Q the number of polyatomic molecules. This argument is compulsory.
-c which piece (“component”) of the information in dump record to extract.

1. C of M positions
2. quaternions
3. unit cell matrix
4. potential energy
5. C of M velocities
6. quaternion derivatives
7. unit cell velocities
8. C of M accelerations
9. quaternion accelerations

10. unit cell accelerations
11. C of M forces
12. torques
13. stress tensor

This argument is compulsory.
-t which timeslices (or dump records) to extract. This is a selector format list and is the index

in the whole dump sequence, not just a single file. Timeslices or dump records are sequentially
numbered in the dump files from 1. Defaults to all timeslices.

-m extract information for selected molecules. This is a selector list specifying the molecule index.
Defaults to all molecules.

-o name of optional output file. Defaults to standard output.
-b selects binary output in single-precision floating point numbers. Defaults to ASCII formatted

numbers.

If any of the compulsory arguments are omitted, you will be prompted to supply a value. In particular
you must always supply the number of molecules and polyatomic molecules. (This information is not
recorded in the dump header and is needed to determine the number of co-ordinates and quaternions in
each dump record.) You must specify which pieces of information to extract using the -c option.

The dump files must, of course, be part of the same dump sequence; this is carefully checked. They
may be supplied as arguments in any order; dumpext automatically determines the sequence from the
information in the headers. This is not as pointless as it sounds, since the list may be generated using
unix shell wild-cards which arrange them in alphabetical rather than numeric order.

The output is arranged in columns, one line per time slice. So if, for example you wish to extract posi-
tions and quaternions there will be 7 columns corresponding to x, y, z, q0, q1, q2, q3. Multiple components
are printed in the integer order of the component, not the order specified with -c. If binary output is asked
for with the -b option the order is the same. The numbers are written sequentially as single-precision
floating-point numbers (in machine native format) without record delimiters. The records may be easily

66

read in C with an fread() call with the appropriate number of bytes or from FORTRAN77 using direct-
access unformatted read1 of the appropriate length records2 OPEN(...,ACCESS=DIRECT,LRECL=nnn). In
the above example there are 3× 4 + 4× 4 = 28 bytes in each record.

B.4 Mdavpos

Mdavpos is a utility for calculating the average positions of particles from dump slices recorded during a
Moldy run. The utility is similar to Mdshak, with command line options

mdavpos [-s system-specification | -r restart-file] [-d dump-file-format] [-t dump-range]
[-f output-type] [-a] [-l] [-i] [-o output-file]

where the arguments have the following meanings

-s read a system specification file.
-r read a restart file. Only one of -s or -r may be given.
-d read configurational data from a dump file given as a prototype name containing a printf()

format string - see section 3.7.
-t range of records in the dump file, specified in “selector” format, to average positions over.
-f give the output in the specified format (see table B.1).
-a calculate the average positions using the Cartesian (absolute) coordinates rather than the frac-

tional coordinates. The default is to use fractional coordinates.
-l orthonormalize the average MD cell so that all cell angles are 90 degrees.
-i shift averaged positions so that all particles lie within the MD cell.
-o name of optional output file. Defaults to standard output.

Table B.1: Structure File Output Types
Type Description
shak SCHAKAL format (default).
pdb Brookhaven Protein Data Bank (PDB) format.
xyz XYZ format suitable for Xmol or RasMol.
dcd DCD format suitable for animation by VMD.
vmd same as dcd.
cssr Cambridge Structure Search and Retrieval (CSSR) format.
arc MSI’s Insight II ARC (also CAR, MDF, COR) archive file format.
xtl Biosym XTL format.
bin raw binary format.

B.5 Mdbond and bdist

Mdbond is a utility for calculating the distances between the centres of mass of pairs of molecules, as well
as angles between triplets of molecules within minimum and maximum values specified using options -b
and -a (for bonds and angles, respectively). The utility calculates values for ALL pairs / triplets within
the cutoffs, including those involving mirror atoms, so that maximum cutoffs greater than the simulation
box lengths are possible.

1The usual FORTRAN sequential unformatted read is not suitable as this expects record size information to be present.
Dumpext can not write this as its format is entirely determined by the whim of the compiler writer. FORTRAN unformatted
sequential files are not guaranteed to be portable even between different compilers on the same machine.

2Be aware that the FORTRAN77 standard does not guarantee what units the record length is specified in. Predictably
some manufacturers’ compilers use bytes and others words. Consult the documentation!

67

Bond lengths are output in columnar format in increasing order with the number and species type of
each pair of molecules given in the first two columns. The angle data are output after the bond data,
also in columnar format. Each row contains the molecule numbers and species types for triplets i-j-k ,
followed by the angle formed about molecule i and the distances i-j and i-k.

The command line options are:

mdbond [-s system-specification | -r restart-file] [-d dump-file-format] [-t dump-range]
[-b bond-limits] [-a angle-limits] [-g species-range] [-c] [-o output-file]

where the arguments have the following meanings:

-s read a system specification file.
-r read a restart file. Only one of -s or -r may be given.
-d read configurational data from a dump file given as a prototype name containing a printf()

format string - see section 3.7.
-t range of records in the dump file, specified in “selector” format, to average positions over.
-b bond limits in tenths of Angstroms entered in form “minimum-maximum”. Limits may be

entered as integers only, so smallest difference is 0.1Å. Defaults to 0.2 to 2Å.
-a angle limits in degrees entered in form “minimum-maximum”. Limits may be entered as integers

only, so smallest difference is 1°. Defaults to 0 to 180°.
-g range of species to be included, given in selector format where 0 represents the first species.

Defaults to all species.
-c if reading system specification file, skip any preceding control parameter info.
-o name of optional output file. Defaults to standard output.

Species positions can be input using system specification, restart or dump files. If the latter case is
chosen, the bond and angle data for each time slice are written consecutively to the same output file,
with each set of data separated by a title indicating the number of the respective time slice.

Bdist converts the data output from mdbond into a format suitable for plotting bond and angle
distribution curves. The utility scans through the output file counting the number of bond lengths /
angles within the specified intervals for different pairs / triplets of species types. The data is output in
two columns, first for bonds and then for angles, with the mid-point of the bond/angle interval given in
the first column and the number of bonds/angles within that interval in the second column. The utility
is invoked on the command line by:

bdist [-i input-file] [-b bond-range] [-a angle-range] [-o output-file]

where the options are:

-i name of the input file.
-b bond interval limits in tenths of Angstroms entered in form “minimum-maximum:increment”.

Limits may be entered as integers only, so smallest increment is 0.1Å. Defaults to 0.2 to 2Å
with a 0.5Å increment.

-a angle interval limits in degrees entered in form “minimum-maximum:increment”. Limits may
be entered as integers only, so smallest increment is 1°. Defaults to 0 to 180° with a 1° increment.

N.B. If the file to be analyzed contains multiple data sets (e.g. from reading dump files), the data for
each time slice must be copied manually into separate files and the “- Time Slice # -” headings removed
before bdist can be used.

B.6 Mdshak

Mdshak was originally written as an interface between Moldy configurations and a molecular graphics
program called SCHAKAL[26]. The current version can write the output in a variety of formats (specified

68

using option -f), suitable for input to freely available viewers such as VMD3, Xmol and RasMol. There is
also a file viewer called “crystal” written by the author for use with AVS, the general purpose visualization
program, and available free from the International AVS Centre.4

Mdshak writes a file containing the co-ordinates of a single or of multiple time slices during a Moldy
run. It can read configurations from (a) a system specification file plus lattice start, (b) a system
specification file plus dump file (c) a restart file or (d) a restart file plus dump file. It can be driven either
interactively or using command-line arguments. If the executable file is named mdshak then the default
output is in SCHAKAL file format. If it is renamed to mdxyz, mdpdb, mdcssr, mddcd (or mdvmd), mdarc
or mdxtl then the default output format is of the corresponding type.

To assist in making animations of a simulation, the trajectory from many timesteps can be written
to a file in the CHARMM and Xplor DCD format. In conjunction with a PDB file this may be used
as input to the VMD visualization program. Tools for manipulating DCD files and converting to other
formats are also available from http://www.ks.uiuc.edu/Development/MDTools/.

In interactive mode you are prompted for the source of the system specification (sys-spec or restart
file) and the configurational information (restart or dump file). But you must either redirect the output
(using > on unix) or specify an output file with -o or the output will go to the screen!

Alternatively, the command line options are

mdshak [-s system-specification | -r restart-file] [-d dump-file-format] [-t dump-range]
[-c] [-f output-type] [-y] [-i extra-text] [-o output-file]

where the meanings of the options are

-s read a system specification file
-r read a restart file. Only one of -s or -r may be given.
-d read the configurational information from a dump file. The argument is a dump prototype

name containing a printf() format string – see section 3.7.
-t range of records in dump file, specified in “selector” format.
-c if reading a system specification file, skip any preceding control parameter info.
-f Write the output file in the format specified (see table B.1).
-y Join up trajectory fragments to eliminate jumps when a molecule exits from one side of the

MD cell and re-enters the opposite side.
-i this inserts its argument into the output file and is used to add extra SCHAKAL commands,

such as BOX.
-o name of output file. Defaults to standard output.

Mdshak may be useful for more than just visualization purposes as it extracts atomic co-ordinates
from the system specification, positions and quaternions. It is written in a modular fashion to make it
easy to add a new output routine (in file molout.c).

B.7 Mdvaf

Mdvaf is a utility for calculating the Velocity Autocorrelation Function (VACF) from Moldy dump files of
at least level 2 (see Section3.7). It can also, optionally, calculate the Velocity Total Correlation Function
(VTF) from the same data source.

For a species of N particles, the VACF, Z(t) is defined as:

Z(t) =
1

NNt

Nt∑
t0=0

N∑
n=1

vn(t0) · vn(t0 + t) (B.1)

3Available from http://www.ks.uiuc.edu/Research/vmd/.
4http://www.iavsc.org/.

69

http://www.ks.uiuc.edu/Development/MDTools/
http://www.ks.uiuc.edu/Research/vmd/
http://www.iavsc.org/

and the VTF as

V TF (t) =
1
Nt

Nt∑
t0=0

(
N∑
n=1

qnvn(t0) ·
N∑
n=1

qnvn(t0 + t)

)
(B.2)

where q is the total charge of the species, v(t) the velocity at time t.
The self-diffusion coefficient of a species, D can be obtained from the integral of its VACF

D =
1
3

∫ ∞
0

Z(t)dt. (B.3)

Similarly, the frequency-dependent ionic conductivity, σ(ω), can be calculated directly from the VTF
via:

σ(ω) =
1

3V kBT

∫ ∞
0

V TF (t)e−iωtdt (B.4)

where V is the volume of the simulation box, kB is Boltzmann’s constant and T is temperature.
The command line options are:

mdvaf [-s system-specification | -r restart-file] [-d dump-file-format] [-t dump-range]
[-v vaf-range] [-g species-range] [-c] [-q] [-o output-file]

where the arguments have the following meanings:

-s read the species data from a system specification file.
-r read the species data from a restart file. Only one of -s or -r may be given.
-d read the centre of mass velocities from a dump file (of dump-level >= 2) given as a prototype

name containing a printf() format string – see section 3.7 .
-t range of records in dump file, specified in “selector” format.
-v time intervals to calculate the VACF or VTF values for, specified in “selector” format. Default

is 0 to half the number of dump records selected, with an increment of 1.
-g range of species to be included, given in “selector” format where 0 represents the first species.

Defaults to all species.
-c if reading system specification file, skip any preceding control parameter info.
-q calculate the VTF instead of the VACF.
-o name of optional output file. Defaults to standard output.

If the executable file is named mdvaf then the default calculation is the VACF. If it is renamed to
mdvtf, then the default is the VTF. In both cases, the output is in the form of a single column of data
headed by the name of the species in question. The lines down each column correspond to increasing
time intervals. Similar to msd, the time intervals selected using -m are taken relative to the dump slices
selected using -t.

B.8 Moldyext

It is usual to plot the instantaneous values of energy, temperature etc. during the course of a simulation,
for example to monitor the approach to equilibrium. Moldyext processes the periodic output produced
by Moldy (see section 3.5) and extracts this information from each timestep recorded. It is presented in
tabular form for input into plotting programs. The command is

moldyext -f fields output-file1 output-file2 . . .

where fields is a list in the selector format above. The numbering runs from left to right, ignoring newlines
and blank columns so that the translational KE’s in figure 3.1 are fields 1 and 14 and the σzz component
of the stress tensor is 30.

Moldyext can currently only extract information from the “instantaneous” section of the output, not
the rolling averages or standard deviations.

70

B.9 Msd

Msd is a utility for calculating the mean square displacements of selected species from the dump files
written during the course of a Moldy run. A plot of msd against time enables the diffusion coefficient of
that species to be calculated from the gradient using the Einstein relation

< |r(t)− r(0)|2 >= 6Dt (B.5)

(see Allen and Tildesley[2, p60]).
For a species of N particles, the mean square displacement is calculated as

< |r(t)− r(0)|2 >=
1

NNt

N∑
n=1

Nt∑
t0

|rn(t+ t0)− rn(t0)|2 (B.6)

where rn(t) is the position of particle n at time t. In interactive mode you are prompted for the source
of the system specification (sys-spec or restart file) and the dump file for reading the configurational
information. You will also be prompted to supply the dump range limits and msd time interval limits
before the calculation can commence. Be careful to either redirect the output (using > on unix) or specify
an output file with -o, otherwise the output will go to the screen! More options can be specified in
command line mode:

msd [-s system-specification | -r restart-file] [-d dump-file-format] [-t dump-range]
[-m msd-time-range] [-i initial-time-increment] [-g species-range] [-u]
[-w trajectory-output-format] [-x|-X] [-y|-Y] [-z|-Z] [-o output-file]

where meanings of the options are

-s read the species data from a system specification file.
-r read the species data from a restart file. Only one of -s or -r may be given.
-d read the centre of mass coordinates from a dump file given as a prototype name containing a

printf() format string – see section 3.7.
-t range of records in dump file, specified in “selector” format.
-m time intervals to calculate the msd values for, specified in “selector” format.
-i the increment the initial time, t0, is increased by during calculation of msd for a given time

interval. Defaults to 1.
-g range of species to be included, given in “selector” format where 0 represents the first species.

Defaults to all species.
-u option to by-pass msd calculation and output the connected particle trajectories in the format

selected by -w.
-w selects output format for trajectory data. Set to 0 for format readable by GNUPlot (default)

or 1 for generic format (simple matrix).
-x, -y, -z, -X, -Y, -Z indicate that limits (in Å) are to be specified in the given cartesian di-

rection. If the direction is in lowercase, only particles whose initial positions lie within these
limits are included in the msd calculation or trajectory output. If the direction is in uppercase,
the program will only include particles lying outside these limits. limits can be imposed in one,
two or all three directions in any possible combination. However, if both options for a single
direction (e.g. -x and -X) are used, priority will be given to the latter option entered on the
command line. The user is prompted for the limits at run time. The default is to include all
particles.

-o name of optional output file. Defaults to standard output.

The output format for msd calculations consists of four columns corresponding to the x, y, z compo-
nents and total msd, with increasing time intervals down the columns.

71

The time intervals specified by -m (and initial time increment -i) are taken relative to the dump slices
selected with -t rather than the complete dump records stored in the dump files. For example, if dump
records 1,3,5,. . . 19 are extracted using -t, then time intervals of -m 1-5 correspond to “real” intervals of
2,4,. . . 10 relative to the original dump file data. It should also be pointed out that the msds for each
time interval are only averaged over as many initial time slices as the longest time interval. Therefore it
is usual to specify the largest value of -m to be half that of the total number of dump slices in order to
optimise the msd time interval and number of calculations over which each msd is averaged.

Selecting option -u circumvents calculation of the msds and instead sends the connected trajectory
coordinates to the output. The default format for trajectory data is “# species-name” followed by a
row of xyz for a single particle for each increasing time interval. Trajectory data for each particle are
separated by two blank lines. This is the format favoured by GNUPlot. Specifying -w 1 selects the
generic matrix format in which a single row contains consecutive xyz coordinates for all particles, with
time increasing down the columns.

B.10 Plotrdf

Plotrdf is a perl script which reads Moldy output files and extracts RDF information, skipping page
breaks. It produces output suitable for reading into most graphics programs, but most notably gnuplot
and xmgrace5. It can also write a command script for either of these two programs if requested. Obviously
you must have perl installed on your computer to use it.

plotrdf [-a] [-gp|-xg] [-ps|-eps] [-np] [-m REGEXP] moldy-output-file ...

-a Take average of multiple RDF blocks.
-gp Write a script and invoke GNUPLOT to plot data.
-xg Write a script and invoke GRACE to plot data.
-ps Invoke GNUPLOT or GRACE to plot data and write as a PostScript file.
-eps Invoke GNUPLOT or GRACE to plot data and write as an encapsulated PostScript (EPS) file.
-np Do not plot data, write a GNUPLOT or GRACE script.
-m output/plot only columns which match the (perl) regular expression REGEXP. (no ’//’ needed)

The output format is in columns with different components laid out across the page ”r rdf1 rdf2 rdf3
...”. Multiple RDF blocks in one or multiple files are processed and output sequentially except if the -a
flag is given, whereupon they are averaged.

If no options or only -a or -m are given, columnar data is written to standard output. If either of
the plot program commands -pg or -xg is given, the selected plotting program is invoked to display the
plot. The columnar RDF data is left in a file named according to the input file with .data appended.
If either of the -ps or -eps options is given the selected plot program is used to create a PostScript (or
encapsulated PostScript) file containing the plot. The -np option modifies all of the above actions by
stopping the invocation of the plot program and writing the script to standard output instead.

Columns may be selected by matching with a PERL regular expression (without the usual delimiters)
given as the argument to the -m option.

B.11 Ransub

It is sometimes necessary to simulate systems in which one or more components have been randomly
substituted onto sites normally occupied by another species. For large numbers of substitutions, doing
this by hand can be tedious, so the utility ransub has been provided to speed up the construction of
system specification files in which “solute” or “dopant” molecules are randomly distributed.

The command line options are:
5Gnuplot can be downloaded from http://www.gnuplot.org and Xmgrace may be obtained from http://plasma-gate.

weizmann.ac.il/Grace/.

72

http://www.gnuplot.org
http://plasma-gate.weizmann.ac.il/Grace/
http://plasma-gate.weizmann.ac.il/Grace/

ransub [-s system-specification | -r restart-file] [-d dump-file-format] [-t dump-range]
[-m solvent-species] [-n no. of substitutions] [-u solute-species] [-w mass] [-q charge]
[-z symbol] [-e species-data-file] [-y potential-parameter-file] [-c] [-o output-file]

where the arguments have the following meanings:

-s read a system specification file.
-r read a restart file. Only one of -s or -r may be given.
-d read configurational data from a dump file given as a prototype name containing a printf()

format string - see section 3.7.
-t range of records in the dump file, specified in “selector” format, to average positions over.
-m the name of the species to be replaced, i.e. the “solvent” species.
-n the number of molecules to be substituted.
-u the name of the substituting or “solute” species.
-w mass of the solute species. Defaults to same mass as the first atom of the solvent species.
-q charge of the solute species. Defaults to same charge as the first atom of the solvent species.
-z name/symbol of the solute species. Defaults to same name as the first atom of the solvent

species.
-e read the species data (mass, charge, symbol) corresponding to the solute species name from the

file specified. (Defaults to elements.dat). Overridden by options -w, -q, -z.
-y read pair interaction parameters between the dopant and other components from the file spec-

ified. This is a text file of format:

potential-type
symbol1 charge1 symbol2 charge2 p1

ij p2
ij . . . prij

symbol3 charge3 symbol4 charge4 p1
kl p2

kl . . . prkl
...

...
...

...
...

...
symbol5 charge5 symbol6 charge6 p1

mn p2
mn . . . prmn

end

where the number of parameters, their values, order and units are the same as in a system
specification file (see section 3.2.1).

-c if reading system specification file, skip any preceding control parameter info.
-o name of optional output file. System specification data created from multiple time slices are

written consecutively to the same file.

The properties of the solute species can be entered explicitly on the command line using options -w,
-q, -z, or by reading it from a species data file. The default species data file, elements.dat, is searched
for automatically, and contains data for the first 103 elements in order of increasing atomic number. The
format is species-namei symbol i massi chargei where massi is in amu, and chargei is the ”commonly
occurring” valence. Since most elements have multiple valences, this should be edited manually to match
the species of interest. This file, or a file of the same format, can be modified to contain data for other
species (atoms, isotopes or molecules) as desired. N.B. The maximum number of species that can be
read from a species data file is, by default, 150. This limit can be increased or decreased by the user by
changing the parameter NELEM in specdata.h and recompiling ransub.

If no data is available for the solute species, it will be given the same symbol, charge and mass as the
first component of the species it is replacing, as described for options -w, -q, -z.

If the system data comes from a restart file, the user is prompted for the energy units to use when
writing the potential parameters to the output. N.B. These may vary slightly from the original input
parameters depending on the exact value of the time-unit used in the control file to specify energy units
other than kJ mol−1. See section 3.2.1. The parameters for the species being introduced can be read
in from a potential parameter file (using option -y), otherwise the parameters between the dopant and

73

other atoms wll be assumed to be zero. It is up to the user to ensure that the potential parameter file
uses the same units as the sys-spec and/or restart files.

The directory in which ransub searches for the species data file and potential parameter file (if speci-
fied) is by default the current directory. The default paths for these files can be changed to suit the user’s
local environment by editing the parameters ELEPATH and POTPATH in specdata.h before compiling
ransub.

At present, ransub can only introduce monatomic solute species, but these can be changed easily
to polyatomic species by editing the system specification file that ransub creates. It is also possible to
introduce randomly distributed vacancies by prefixing the solute name with “#”.

The Moldy distribution comes with three widely-used Buckingham potential parameter sets (bush.pot,
catlow.pot and grimes.pot) taken from the literature. These may act as guides to the potential parameter
file format.

B.12 Syswrite

Syswrite is a utility for creating Moldy system specification and initial configuration files from either
Cambridge CSSR, Brookhaven PDB or Schakal structural data files. This utility is useful for automating
the creation of Moldy input files from the output of standard molecular graphics packages. At present
syswrite treats all species as monatomic, so some modification of the output file will be necessary to
simulate multicomponent species.

The physical properties of each species not already contained in the structure files are read in au-
tomatically from the text file elements.dat. An alternative file name can be specified using option -e.
If a potential parameter file name is given on the command line using option -y, the appropriate pair
interactions read from this file are included in the system specification file (output).

The command line options are:

syswrite [-g CSSR-input-file | -p PDB-input-file | -h Schakal-input-file] [-e species-data-file] [-y
potential-parameter-file] [-o output-file]

where the arguments have the following meanings:

-g read the structural data from a CSSR file.
-p read the structural data from a PDB file.
-h read the structural data from a Schakal file. Only one of -g, -p or -h may be given.
-e read the species data (name, mass, charge, symbol) from the file specified. (Defaults to ele-

ments.dat).
-y read interaction parameters for pairs of species from the file specified. This is a text file of

format:
potential-type
symbol1 charge1 symbol2 charge2 p1

ij p2
ij . . . prij

symbol3 charge3 symbol4 charge4 p1
kl p2

kl . . . prkl
...

...
...

...
...

...
symbol5 charge5 symbol6 charge6 p1

mn p2
mn . . . prmn

end

where the number of parameters, their values, order and units are the same as in a system
specification file (see section 3.2.1).

-o name of output file. Defaults to standard output.

In interactive mode, the user is prompted for the name of the structure file to read from. This must
end in either ”.pdb”, ”.cssr” or ”.shak” (upper- or lowercase), so that syswrite can recognise the file format
and successfully read in the data.

The default directory in which syswrite searches for both the species data file and potential parameter
file (if specified) is the current directory. The default pathnames for these files can be changed to suit the

74

user by re-defining the parameters ELEPATH and POTPATH in specdata.h (and recompiling syswrite).
Further details about the species data and potential parameters file can be found in appendix B.11.

Since both symbol and charge are specified in the potential parameter file, syswrite is able to handle
species of the same name but different charge. In this case, syswrite modifies the species names by
appending consecutive numbers to distinguish between them, e.g. Ce+3 and Ce+4 would be labelled
cerium and cerium1, respectively, if appearing in the same structure file. If no potential parameter
file is specified, all parameters are given default values of 0 and the potential type is given as Potential
parameters.

The Moldy distribution comes with three widely-used Buckingham potential parameter sets (bush.pot,
catlow.pot and grimes.pot) taken from the literature. These may act as a guide to the potential parameter
file format.

75

Bibliography

[1] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, Dover, New York, 1970.

[2] M. P. Allen and D. J. Tildesley, Computer simulation of liquids, Clarendon Press, Oxford, 1987.

[3] Hans C. Andersen, Molecular dynamics simulation at constant pressure and/or temperature, J. Chem.
Phys. 72 (1980), no. 4, 2384–2393.

[4] D. Beeman, Some multistep methods for use in molecular dynamics calculations, J. Comp. Phys. 20
(1976), 130–139.

[5] H. Bekker, E. J. Dijkstra, M. K. R. Renardus, and H. J. C. Berendsen, An efficient box shape
independent non-bonded force and virial algorithm for molecular dynamics, Mol. Simul. 14 (1995),
137–151.

[6] F. Berthaut, L’énergie électrostatique de rèseaux ioniques, J. de Physique Rad. 13 (1952), 499–505.

[7] K. C. Bowler, R. D. Kennaway, G. S. Pawley, and D. Roweth, An introduction to OCCAM-2 pro-
gramming, Chartwell-Bratt, 1987.

[8] K. Cho and J. D. Joannopoulos, Ergodicity and dynamical properties of constant-temperature molec-
ular dynamics, Phys. Rev.A 45 (1992), no. 10, 7089–7097.

[9] K. Cho, J. D. Joannopoulos, and L. Kleinman, Constant-temperature molecular dynamics with mo-
mentum conservation, Phys. Rev.E 47 (1993), no. 5, 3145–3151.

[10] E. Clementi, G. Corongiu, and J. H. Detrich, Parallelism in computations in quantum and statistical
mechanics, Comp. Phys. Commun. 37 (1985), 287–294.

[11] Charles L. Cleveland, New equations of motion for molecular dynamics systems that change shape,
J. Chem. Phys. 89 (1988), no. 8, 4987–4993.

[12] W. Deitz, W. O. Riede, and K. Heinzinger, Molecular dynamics simulation of an aqueous MgCl2
solution, Z. Naturforsch. 37a (1982), 1038–1048.

[13] D. J. Evans, On the representation of orientation space, Mol. Phys. 34 (1977), no. 2, 317–325.

[14] D. J. Evans and S. Murad, Singularity free algorithm for molecular dynamics simulation of rigid
polyatomics, Mol. Phys. 34 (1977), no. 2, 327–331.

[15] D. Fincham, Leapfrog rotational algorithms, Mol. Simul. 8 (1992), 165–178.

[16] , Optimization of the Ewald sum for large systems, Mol. Simul. 13 (1994), no. 1, 1–9.

[17] Message Passing Interface Forum, MPI: A message-passing interface standard, Int. J. Supercomput.
App. 8 (1994), no. 3-4, 165.

[18] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and Vaidy Sunderam,
PVM: Parallel virtual machines, a user’s guide and tutorial for networked parallel computing, MIT
Press, Cambridge, MA, 1994.

76

[19] H. Goldstein, Classical mechanics, 2nd ed., Addison–Wesley, Reading, MA, 1980.

[20] J. P. Hansen and I. R. McDonald, Theory of simple liquids, 2nd ed., Academic Press, London, 1986.

[21] Robert J. Harrison, Tcgmsg send/receive subroutines, Battelle Pacific Northwest Laboratory, 1994,
Available by internet ftp from url ftp://ftp.tcg.anl.gov/pub/tcgmst/tcgmsg-4.04.tar.Z.

[22] D. M. Heyes, Large numbers of particles on the Cray-1, Information Quarterly - CCP5 25 (1987),
57–61.

[23] W. G. Hoover, Canonical dynamics: equilibrium phase-space distributions, Phys. Rev.A 31 (1985),
1695–1697.

[24] Sun Microsystems Inc, External data representation: Protocol specification, 1987, RFC1014.

[25] W. L. Jorgensen, Revised TIPS model for simulations of liquid water and aqueous solutions, J. Chem.
Phys. 77 (1982), 4156–63.

[26] E. Keller, Neues von SCHAKAL, Chemie in unserer Zeit 20 (1986), no. 6, 178–181.

[27] B. W. Kernighan and D. Ritchie, The C programming language, 1st ed., Prentice Hall, Cambridge,
1978.

[28] , The C programming language, second ed., Prentice Hall, Cambridge, 1988.

[29] H. Kistenmacher, H. Popkie, and E. Clementi, Study of the structure of molecular complexes III.
Energy surface of a water molecule in the field of a fluorine or chlorine anion., J. Chem. Phys. 58
(1973), no. 4, 5842.

[30] Donald E. Knuth, Fundamental algorithms, second ed., The Art of Computer Programming, vol. 1,
section 1.2, Addison-Wesley, 1973.

[31] A. Laakonsen, Computer simulation package for liquids and solids with polar interactions. I. McMOL-
DYN/H2O: aqueous systems, Internal Report KGN-41, IBM Corporation, Kingston, N. Y.12401,
USA, 1985.

[32] S. W. De Leeuw, J. W. Perram, and E. R. Smith, Simulation of electrostatic systems in periodic
boundary conditions. I Lattice sums and dielectric constant, Proc. Roy. Soc. A373 (1980), 27–56.

[33] O. Matsuoka, E. Clementi, and M. Yoshimine, CI study of the water dimer potential surface, J.
Chem. Phys. 64 (1976), no. 4, 1351–1361.

[34] Richard Miller, A library for bulk-synchronous parallel computing, Parallel Processing Specialist
Group workshop on General Purpose Parallel Computing, British Computer Society, 1993.

[35] S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys. 52
(1984), 255–268.

[36] , Molecular dynamics simulations at constant temperature and pressure, Computer Simulation
in Materials Science (M. Meyer and V. Pontikis, eds.), vol. E205, Kluwer, Dordrecht, 1991, NATO
ASI, pp. 21–42.

[37] S. Nosé and M. L. Klein, Constant pressure molecular dynamics for molecular systems, Mol. Phys.
50(5) (1983), 1055–1076.

[38] Rafael Rodriguez Pappalardo and Enrique Sanchez Marcos, Recovering the concept of the hydrated
ion for modelling ionic solutions: A monte carlo study of Zn2+ in water, J. Phys. Chem. 97 (1993),
4500–4504.

[39] M. Parrinello and A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics
method, J. App. Phys. 52 (1981), no. 12, 7182–7190.

77

[40] G. S. Pawley, Molecular dynamics simulation of the plastic phase; a model for SF6, Mol. Phys. 43
(1981), no. 6, 1321–1330.

[41] , Computer simulation of the plastic-to-crystalline phase transition in SF6, Phys. Rev. Lett.
48 (1982), 410–413.

[42] G. S. Pawley and M. T. Dove, Quaternion-based reorientation conditions for molecular dynamics
analyses, Mol. Phys. 55 (1985), no. 5, 1147–1157.

[43] J. G. Powles, W. A. B. Evans, E. McGrath, K. E. Gubbins, and S. Murad, A computer simulation
for a simple model of liquid hydrogen chloride, Mol. Phys. 38 (1979), 893–908.

[44] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical recipes
in C the art of scientific computing, 2nd ed., Cambridge University Press, 1992.

[45] B. Quentrec and C. Brot, New methods for searching for neighbours in molecular dynamics compu-
tations, J. Comp. Phys. 13 (1975), 430–432.

[46] D. C. Rapaport, Large-scale molecular-dynamics simulation using vector and parallel computers,
Comp. Phys. Rep. 9 (1988), no. 1, 1–53.

[47] K. Refson, Molecular dynamics simulation of solid n-butane, Physica 131B (1985), 256–266.

[48] K. Refson and G. S. Pawley, Molecular dynamics studies of the condensed phases of n-butane and
their transitions, I Techniques and model results, Mol. Phys. 61 (1987), no. 3, 669–692.

[49] P. M. Rodger, On the accuracy of some common molecular dynamics algorithms, Mol. Simul. 3
(1989), 263–269.

[50] W. Smith, Molecular dynamics on hypercube parallel computers, Comp. Phys. Commun. 62 (1991),
229–248.

[51] , A replicated-data molecular dynamics strategy for the parallel Ewald sum, Comp. Phys.
Commun. 67 (1992), 392–406.

[52] W. Smith and D. Fincham, The program MDMPOL, SERC, Daresbury Laboratory, 1982, CCP5
Program Library.

[53] R. Sonnenschein, An improved algorithm for molecular dynamics simulation of rigid molecules, J.
Comp. Phys. 59 (1985), no. 2, 347–350.

[54] P. Du Val, Homographies, quaternions and rotations, Oxford Mathematical Monograph, 1964.

[55] L. Verlet, Computer ‘experiments’ on classical fluids. I. thermodynamical properties of lennard-jones
molecules, Phys. Rev. 165 (1967), 201–214.

[56] Renata M. Wentzcovitch, Invariant molecular-dynamics approach to structural phase transitions,
Phys. Rev. B 44 (1991), no. 5, 2358–2361.

78

	Introduction
	Terms and Conditions

	Algorithms and Equations
	The Equations of Motion
	Integration Algorithms
	Potentials and Short-Range Forces
	Pressure and Stress
	Long Range Corrections
	Potential Functions

	The Ewald Sum
	Parameter Values
	Uniform Sheet Correction
	Surface Dipole Term
	Stress

	Periodic Boundaries --- the Link Cell Method
	Molecular Aspects
	No minimum-image convention
	Cell or Strict cutoff

	Temperature Initialization and Control
	Rescaling
	Nosé-Hoover Thermostat
	Gaussian Thermostat

	Constant Stress/pressure
	Constrained h Matrix
	Constant-Pressure

	Radial Distribution Functions
	The Initial Configuration
	The Skew Start Method
	Initial Velocities

	Frameworks
	Implementation
	Stress and Pressure Undefined
	Charged Frameworks

	Running Moldy
	The Control File
	Setting up the System
	System Specification
	The Initial Configuration

	Restarting from a Previous Run
	Periodic Backup
	Portable Restart Files

	Setting the Temperature
	Output
	Output units

	Radial Distribution Functions
	Dumping
	Constant Stress or Pressure Simulation
	Cutoffs and Adjustable Parameters
	Framework Simulations
	Messages and Errors

	Compiling and Modifying Moldy
	Compilation
	Parallel Version (Message Passing)
	Shared-Memory Parallel Version

	Portability
	System Dependencies
	Optimization and Vectorization
	Optimization for Vector Architectures

	Modifying Moldy
	Adding a New Potential
	Porting the Parallel Version

	Program Structure
	Data Structures
	Types and Typedefs
	Memory Management
	System Variables and Data Structures

	Files and Functions
	Source Files

	Flow of Control
	Input and Initialization
	Main timestep loop
	The Site-Forces Calculation

	Parallelization
	Parallel Strategy
	Implementation
	Input/Output and startup
	Distributed forces calculation
	Radial Distribution Functions

	Example System Specifications
	Argon
	TIPS2 Water
	Aqueous MgCl2 Solution
	Quartz

	Utility Programs
	Dumpanal
	Dumpconv
	Dumpext
	Mdavpos
	Mdbond and bdist
	Mdshak
	Mdvaf
	Moldyext
	Msd
	Plotrdf
	Ransub
	Syswrite

