High-Performance Computing in Theoretical Chemistry: Today and Tomorrow

Axel Kohlmeyer

Lehrstuhl für Theoretische Chemie Ruhr-Universität Bochum <axel.kohlmeyer@theochem.rub.de>

Blue Gene/L Workshop, Jülich, Sep 2004

Outline

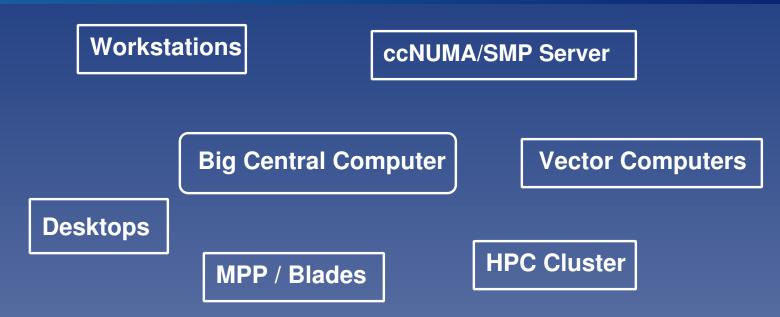
- Motivation
- Hardware
- Benchmarks
- Software
- Trends

- Examples
- Solvated DNA Fiber
- Surface Hopping
- Catalytic Triade
- Summary

Motivation

• "Sysadmin-Perspective":

★ Planning and managing hardware acquisition


- Compiling, porting, and optimization on several platforms
- ★ Different packages from all areas of theoretical chemistry

Inverse approach to select topics and tools:

- ★ Interest to use hardware efficiently
- Show how to use tools well with available hardware
- ★ Select problems according to tools

Hardware Overview

Diversification trend: from 'one size fits all' machine to diverse architectures

Unification trend: Unix-like operating systems, MPI/OpenMP programming models

Hardware Differences

- not much difference in pure CPU speed
- main difference in memory and I/O bandwidth
- differences in reliability under heavy duty use
- differences in connectivity

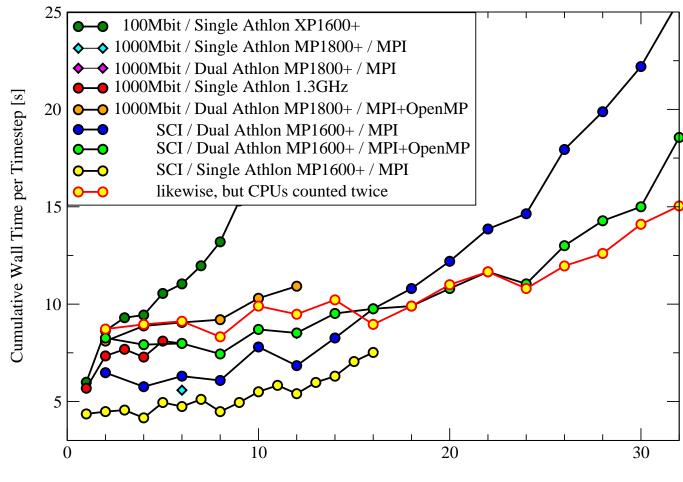
for imbalanced machines (e.g. Linux PC): careful deployment planning and architecture specific optimizations most effective

CPMD Serial Runs (10 Ry)

Machine	Wall Time / s
AMD Athlon XP1600+, 1.4GHz, PC133	545
AMD Athlon MP1600+, 1.4GHz, PC266-ECC	443
Compaq Alpha EV6, 600MHz, XP1000	435
HP SuperDome 32000, HPPA 8700,750MHz	388
AMD Athlon XP2500+, 1.83GHz, PC333	361
Compaq Alpha EV67, 677MHz, ES40	284
AMD Opteron, 1.6GHz, 32-bit	287
AMD Opteron, 1.6GHz, 64-bit	254
Intel P4 Xeon, 2.4GHz, PC266	236
Compaq Alpha EV68AL, 833MHz, DS20	234
Intel Itanium2, 900MHz, HP zx6000	206
AMD Athlon64 3200+, 2.0GHz, PC333, 64-bit	173
IBM Power4+ 1.7 GHz, Regatta H+	171

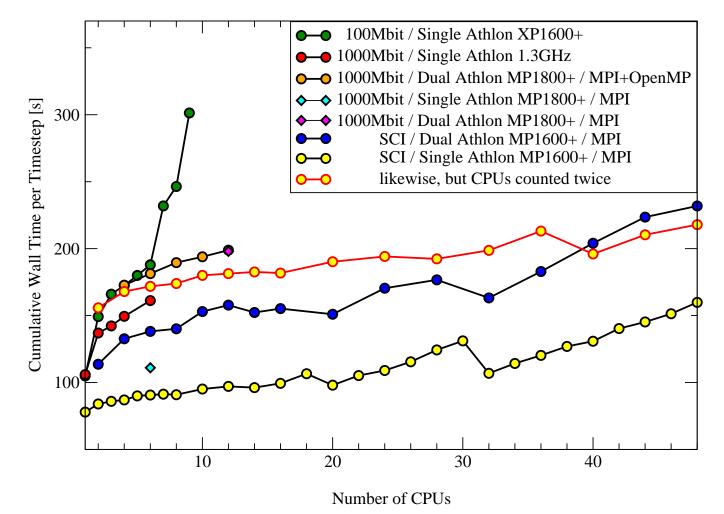
CPMD Serial Runs (30/50 Ry)

Machine	Wall Time / s
AMD Athlon XP1600+, 1.4GHz, PC133	2878
HP SuperDome 32000, HPPA 8700, 750MHz	2672
Compaq Alpha EV6, 600MHz, XP1000	2624
AMD Opteron, 1.6GHz, PC266 memory, 64-bit	1292
Intel Pentium 4 Xeon, 2.4GHz,	1275
AMD Opteron, 1.6GHz, PC266 memory, 32-bit	1157
IBM Power4+ 1.7 GHz, Regatta H+	997
AMD Athlon XP1800+, 1.53GHz, PC266	5878
AMD Athlon XP2500+, 1.83GHz, PC333	5196
AMD Athlon XP2500+, 1.83GHz, dual-channel PC333	3848
Intel Itanium2, 900MHz, HP zx6000	3145
AMD Opteron, 1.6GHz, PC266 memory, 32-bit	3143
AMD Athlon64 3200+, 2.0GHz, PC333, 64-bit	3134
IBM Power4+ 1.7 GHz, Regatta H+,	2259

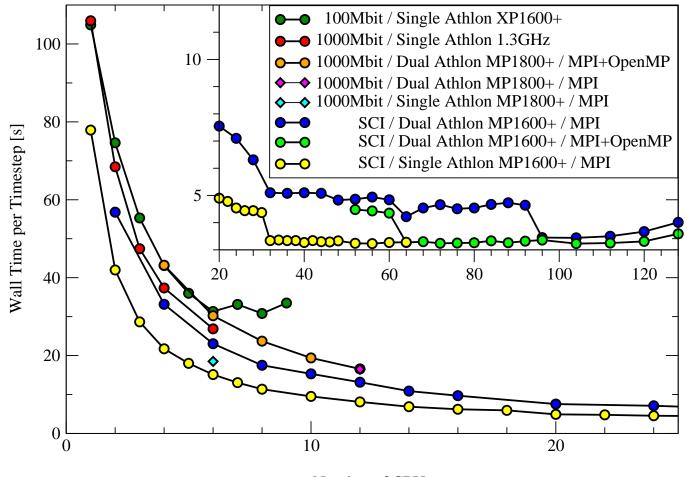


Library Optimizations

CPMD, 100 steps	CP-MD:		· · · · · · · · · · · · · · · · · · ·
Machine	BLAS	generic ATLAS	specific ATLAS
Athlon XP1800+	950 s	428 s	378 s
(1.53 GHz)	251%	113%	100%
Pentium IV 2GHz	765 s	493 s	441 s
	173%	112%	100%
P4 Xeon 2.4GHz	471 s	316 s	276 s
	171%	118%	100%
Pentium M 900MH	lz 716 s	430 s	-


Si_63 bulk / PBC / 10 Ryd

Number of CPUs


Wed Aug 27 11:22:55 2003 axel.kohlmeyer@theochem.ruhr-uni-bochum.de http://www.theochem.ruhr-uni-bochum.de/go/cpmd-bench.html

Si_63 bulk / PBC / 70 Ryd

Wed Aug 27 11:22:56 2003 axel.kohlmeyer@theochem.ruhr-uni-bochum.de http://www.theochem.ruhr-uni-bochum.de/go/cpmd-bench.html

Si_63 bulk / PBC / 70 Ryd

Number of CPUs

Wed Aug 27 11:22:56 2003 axel.kohlmeyer@theochem.ruhr-uni-bochum.de http://www.theochem.ruhr-uni-bochum.de/go/cpmd-bench.html

Hardware Summary

- different types of hardware for different problems
- better parallel scaling with larger problems
- bandwidth matters (memory, I/O, network)
- optimal throughput and optimal performance ("capacity" and "capability") for different hardware

applications in theoretical chemistry need them all

Application Overview

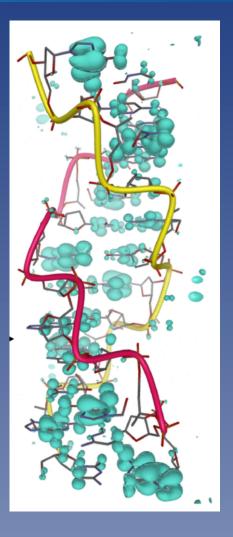
Computations in Theoretical Chemistry cover wide spectrum:

Method	Application	Scaling	
Configuration Interaction	Energetics, Spectra	N^6	
Hartree-Fock	Molecular Structure	N^4	
DFT FP Molecular Dynamics	Structure Dynamics	N^3	
classical Molecular Dynamics	Biomolecules, Liquids	N^2	
High demand for more CPU power to:			
\rightarrow treat problems more accurately			
\rightarrow treat larger problems			
\rightarrow get better statistic	CS		

 \Rightarrow larger/faster computers *and* better algorithms

How To Improve The Software

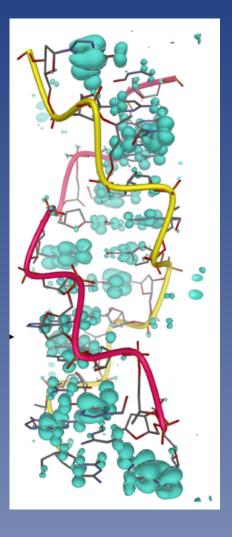
- new algorithms needed to approach 'linear scaling':


 → ignoring or approximating faraway contributions
 → only works for "large enough" problems
- parallelization of existing software: good parallel scaling difficult if not trivially parallelizable or written to be parallelizable
- code development takes long time: extensive testing needed to ensure correct results, few good scientists are also good programmers
- \Rightarrow "new" software projects examples: NWChem, CP2k, NAMD

Where Use A Massively Parallel Machine?

- parallelizable² applications:
 - first principles molecular dynamics with path-integrals
 - replica-exchange (classical) molecular dynamics
- massive job farming through an external 'driver':
 - scanning of potential energy surfaces
 - 'combinatorial quantum chemistry'
- higher throughput for well scaling applications
 - for some applications (much) better statistics are needed
 - \Rightarrow longer and/or multiple trajectories.

Example 1: DNA Fiber

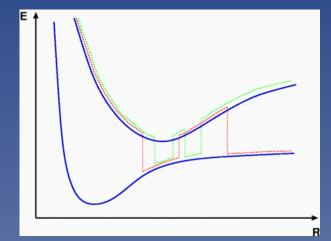

Current project on Earth Simulator by Prof. Dr. Mauro Boero

Hydrated double strand poly G-C fiber
1194 atoms, 12227.7 Å³ supercell
periodic boundary conditions

Car-Parrinello MD with Local Spin Density approx. including BLYP gradient correction

Norm-conserving pseudopotentials with 70 Ry plane wave cutoff.

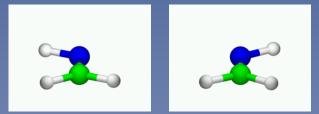
Example 1: DNA Fiber Computational Details



CPU time / MD step with 32 nodes: 110s

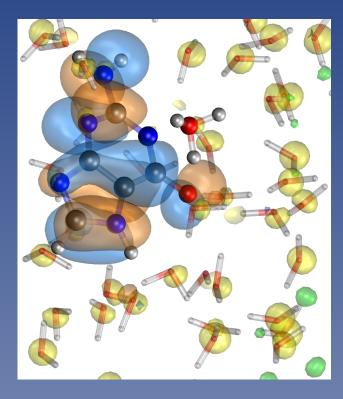
more than an order of magnitude more effort than previous "Benchmark System": 64 water, 192 atoms, 1912.6 Å³ supercell

proton transport with 32 H_2O + 1 H_3O^+ with ultrasoft (25 Ry) pseudopotentials needs 1 single PC for a week


Example 2: CPMD with Surface Hopping

Current project on JUMP by Dr. Nikos Doltsinis

BO-MD with two wavefunctions simultaneously: ground state and first excited singlett

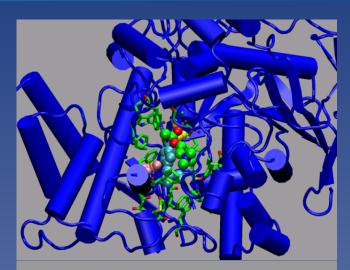

propagation needs (5-10x) smaller timestep than conventional BO-MD

switch between potential surfaces (hopping) during simulation

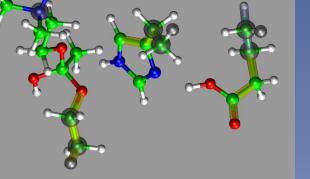
final result (e.g. quantum yield) based on averaging over many trajectories

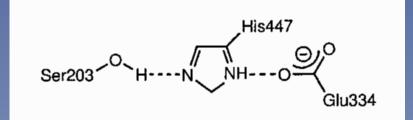
Example 2: CPMD with Surface Hopping Details

molecule in gas phase only benchmark, alternatives are more precise or efficient advantage of CPMD:


treatment of solvated molecules

singly occupied MOs separate


- one stays on guanine
- one delocalized in water


one MD step: \approx 140 seconds on one 32-CPU frame \approx one month per single trajectory

Example 3: Catalytic Triade

Deacylation of Acetylcholine in AChE, undergraduate research project at RUB Chemical neurotransmitter Inhibition by nerve poisons: snakes venom, chemical weapons (Sarin) Prototype system for catalytic triade mechanism

Example 3: Catalytic Triade Details

simple CPMD simulations of triade subsystem, show influence of whole protein structure on reactivity.

 \Rightarrow need at least QM/MM simulation on the timescale of fully classical system MD.

Protonation state of various groups unknown, yet electrostatics play important role. \Rightarrow full QM treatment of whole (\approx 530 residues) or large part of enzyme desirable.

Trends

- increasing size and complexity of studied topics: from elementary steps to complex systems of interaction
 - full systems instead of cut-down subystems
 complex chemical reactions in condensed phase
 biochemically relevant processes
- twofold increase in cpu time demand: larger systems, longer trajectories for better statistics
- \Rightarrow massive increase in cpu time requirement

Summary

- theoretical chemistry uses and needs large variety of machines
- software adapts to new hardware, but slowly
- new algorithms strive for better scaling
- some codes already scale extremely well
- new codes are being developed
- some trivially parallelizable approaches only viable through massively parallel resources
- old tools stay in use nevertheless.
- \Rightarrow diversification of platforms needed to satisfy all demands.

Thanks

- Prof. Dr. Dominik Marx, RUB
- Prof. Dr. Mauro Boero, Tsukuba University
- Dr. Nikos Doltsinis, Holger Langer, RUB
- too many people to name them individually who:
 - * provided access to their computer(s)
 - discussed optmization and portability issues

(this page was intentionally left blank)