Turbomole

Program Package for $a b$ initio
Electronic Structure Calculations

USER'S MANUAL

Contents

1 Preface and General Information 11
1.1 Contributions and Acknowledgements 11
1.2 Features of TURBOMOLE 13
1.3 How to Quote Usage of Turbomole 13
1.4 Modules and Their Functionality 22
1.5 Tools 24
2 Installation of TURBOMOLE 27
3 How to Run Turbomole 29
3.1 A ‘Quick and Dirty' Tutorial 29
3.1.1 Single Point Calculations: Running Turbomole Modules 31
3.1.2 Energy and Gradient Calculations 31
3.1.3 Calculation of Molecular Properties 32
3.1.4 Modules and Data Flow 32
3.2 Parallel Runs 34
3.2.1 Running Parallel Jobs - MPI case 35
3.2.2 Running Parallel Jobs - SMP case 39
4 Preparing your input file with Define 43
4.0.3 Universally Available Display Commands in DEFINE 44
4.0.4 Specifying Atomic Sets. 44
4.0 .5 control as Input and Output File 44
4.0.6 \quad Be Prepared 45
4.1 The Geometry Main Menu, 46
4.1.1 Description of commands 48
4.1.2 Internal Coordinate Menu 51
4.1.3 Manipulating the Geometry 56
4.2 The Atomic Attributes Menu 56
4.2.1 Description of the commands 59
4.3 Generating MO Start Vectors 61
4.3.1 The MO Start Vectors Menu 61
4.3.2 Assignment of Occupation Numbers 64
4.3.3 Orbital Specification Menu 66
4.3.4 Roothaan Parameters 67
4.3.5 \quad Start-MOs for broken symmetry treatments (" flip") 67
4.4 The General Options Menu 70
4.4.1 Important commands 71
4.4.2 Special adjustments 77
4.4.3 Relax Options 79
4.4.4 Definition of External Electrostatic Fields 83
4.4.5 Properties 84
5 Calculation of Molecular Structure and Ab Initio Molecular Dy- 93
5.1 Structure Optimizations using the Jobex Script 93
5.1.1 Options 93
5.1.2 Output 94
5.2 Program STATPT 95
5.2.1 General Information 95
5.2.2 Hessian matrix 96
5.2.3 Finding Minima 97
5.2.4 Finding transition states 97
5.3 Program Relax 98
5.3.1 Purpose 98
5.3.2 Optimization of General Coordinates 99
5.3.3 Force Constant Update Algorithms 100
5.3.4 Definition of Internal Coordinates 102
5.3.5 Structure Optimizations Using Internal Coordinates 102
5.3.6 \quad Structure Optimization in Cartesian Coordinates 103
5.3.7 Optimization of Basis Sets (SCF only) 104
5.3.8 Simultaneous Optimization of Basis Set and Structure 104
5.3.9 Optimization of Structure and a Global Scaling Factor 105
5.3.10 Conversion from Internal to Cartesian Coordinates 105
5.3.11 Conversion of Cartesian Coordinates, Gradients and Force
Constants to Internals 105
5.3.12 The m-Matrix 106
5.3.13 Initialization of Force Constant Matrices 106
5.3.14 Look at Results 107
5.4 Force Field Calculations 107
5.4.1 Purpose 107
5.4.2 How to Perform a UFF Calculation 108
5.4.3 The UFF implementation 108
5.5 Molecular Dynamics Calculations 110
5.6 Counterpoise-Corrections using the JobBSSE Script 112
5.6.1 Options 113
5.6.2 Output 114
6 Hartree-Fock and DFT Calculations 115
6.1 Background Theory 117
6.2 Exchange-Correlation Functionals Available 118
6.3 Restricted Open-Shell Hartree-Fock 122
6 6.3.1 Brief Description 122
6.3.2 One Open Shell 122
6.3.3 More Than One Open Shell 125
6.3.4 Miscellaneous 127
6 6.4 Two-component Hartree-Fock and DFT Calculations 129
6.4.1 Background Theory 129
6.4.2 How to use 129
6.5 Using the Douglas-Kroll-Hess (DKH) Hamiltonian 131
6.6 Periodic Electrostatic Embedded Cluster Method 132
6.6.1 General Information 132
6.6.2 Theoretical Background 132
6.6.3 Calculation Setup 133
6.7 Empirical Dispersion Correction for DFT Calculations 140
7 Hartree-Fock and DFT Response Calculations: Stability, Dynamic Response Properties, and Excited States 141
7.1 Functionalities of Escf and Egrad 141
7.2 Theoretical Background 142
7.3 Implementation 144
7.4 How to Perform 145
7.4.1 Preliminaries 146
7.4.2 Polarizabilities and Optical Rotations 146
7.4.3 Stability Analysis 147
7.4.4 Vertical Excitation and CD Spectra 148
7.4.5 Excited State Geometry Optimizations 149
7.4.6 Excited State Force Constant Calculations 150
7.4.7 Polarizability Derivatives and Raman Spectra 150
8 Second-order Møller-Plesset Perturbation Theory 152
8.1 Functionalities of Mpgrad, Rimp2, Ricc2 152
8.2 Some Theory 153
8.3 How to Prepare and Perform MP2 Calculations 154
8.4 General Comments on MP2 Calculations, Practical Hints 157
8.5 RI-MP2-F12 Calculations 159
8.6 Laplace-transformed SOS-RI-MP2 with $\mathcal{O}\left(\mathcal{N}^{4}\right)$ scaling costs 163
9 Second-Order Approximate Coupled-Cluster (CC2) Calculations 166
9.1 CC2 Ground-State Energy Calculations 170
9.2 Calculation of Excitation Energies 172
9.3 First-Order Properties and Gradients 176
9.3.1 Ground State Properties, Gradients and Geometries 176
9.3.2 Excited State Properties, Gradients and Geometries 178
9.3.3 Visualization of densities and Density analysis 181
9.3.4 Fast geometry optimizations with RI-SCF based gradients 183
9.4 Transition Moments 183
9.4.1 Ground to excited state transition moments 183
9.4.2 Transition moments between excited states 185
9.5 Parallel RI-MP2 and RI-CC2 Calculations 186
$9.6 \quad$ Spin-component scaling approaches (SCS/SOS) 187
10 CCSD, CCSD(F12) and CCSD(T) calculations 188
10.1 Characteristics of the Implementation and Computational Demands 190
11 Calculation of Vibrational Frequencies and Vibrational Spectra 197
11.1 Analysis of Normal Modes in Terms of Internal Coordinates 199
11.2 Calculation of Raman Spectra 200
11.3 Vibrational frequencies with fixed atoms using NumForce 200
12 Calculation of NMR Shieldings 202
12.1 Prerequisites 202
12.2 How to Perform a SCF of DFT Calculation 202
12.3 How to Perform a MP2 calculation 203
12.4 Chemical Shifts 204
12.5 Other Features and Known Limitations 204
13 Molecular Properties, Wavefunction Analysis, and Interfaces to Vi-
sualization Tools 205
13.1 Wavefunction analysis and Molecular Properties 205
13.2 Interfaces to Visualization Tools 207
14 Treatment of Solvation Effects with Cosmo 212
15 Keywords in the control file 217
15.1 Introduction 217
15.2 Format of Keywords and Comments 217
15.2.1 General Keywords 217
15.2.2 Keywords for System Specification 219
15.2.3 Keywords for redundant internal coordinates in \$redund_inp 221
15.2.4 Keywords for Module Uff 223
15.2.5 Keywords for Modules Dscf and Ridft 227
15.2.6 Keywords for Periodic Electrostatic Embedded Cluster Method 248
15.2.7 Keywords for Cosmo 250
15.2.8 Keywords for Modules Grad and Rdgrad 254
15.2.9 Keywords for Module Aoforce 255
15.2.10 Keywords for Module Escf 257
15.2.11 Keywords for Module Egrad 260
15.2.12 Keywords for Modules Mpgrad and Rimp2 260
15.2.13 Keywords for Module Ricc2 263
15.2.14 Keywords for Module Relax 274
15.2.15 Keywords for Module Statpt 282
15.2.16 Keywords for Module Moloch 284
15.2.17 Keywords for wave function analysis and generation of plotting data 288
15.2.18 Keywords for Module Frog 296
15.2.19 Keywords for Module Mpshift 301
15.2.20 Keywords for Parallel Runs 302
16 Sample control files 305
16.1 Introduction 305
$16.2 \mathrm{NH}_{3}$ Input for a RHF Calculation. 306
$16.3 \mathrm{NO}_{2}$ input for an unrestricted DFT calculation 310
16.4 TaCl_{5} Input for an RI-DFT Calculation with ECPs. 314
16.5 Basisset optimization for Nitrogen 321
16.6 ROHF of Two Open Shells 324
17 The Perl-based Test Suite Structure 327
17.1 General 327
17.2 Running the tests 327
17.3 Taking the timings and benchmarking 329
17.4 Modes and options of the TTEST script 329

Bibliography 333

Index 342

Chapter 1

Preface and General Information

1.1 Contributions and Acknowledgements

TURBOMOLE [1] is a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH 1989-2007, TURBOMOLE GmbH, since 2007. The following people have made contributions:

Reinhart Ahlrichs, Markus Klaus Armbruster, Rafał A. Bachorz, Michael Bär, Hans-Peter Baron, Rüdiger Bauernschmitt, Florian A. Bischoff, Stephan Böcker, Nathan Crawford, Peter Deglmann, Fabio Della Sala, Michael Diedenhofen, Michael Ehrig, Karin Eichkorn, Simon Elliott, Filipp Furche, Andreas Glöß, Frank Haase, Marco Häser, Christof Hättig, Arnim Hellweg, Sebastian Höfener, Hans Horn, Christian Huber, Uwe Huniar, Marco Kattannek, Wim Klopper, Andreas Köhn, Christoph Kölmel, Markus Kollwitz, Klaus May, Paola Nava, Christian Ochsenfeld, Holger Öhm, Mathias Pabst, Holger Patzelt, Dmitrij Rappoport, Oliver Rubner, Ansgar Schäfer, Uwe Schneider, Marek Sierka, David P. Tew, Oliver Treutler, Barbara Unterreiner, Malte von Arnim, Florian Weigend, Patrick Weis, Horst Weiss, Nina Winter

We acknowledge help from

- Michael Dolg, University of Stuttgart, now: University of Cologne
- Jürgen Gauss, University of Mainz
- Christoph van Wüllen, University of Bochum, now: TU Kaiserslautern
- Stefan Brode, BASF AG, Ludwigshafen
- Heinz Schiffer, HOECHST AG, Frankfurt
and financial support by the University of Karlsruhe, BASF AG, BAYER AG, HOECHST AG, the DFG, and the "Fonds der Chemischen Industrie".
Contact address:
Abteilung für Theoretische Chemie
Institut für Physikalische Chemie
Karlsruher Institut für Technologie
Kaiserstr. 12
D-76131 Karlsruhe
E-mail: info@turbomole.com
Web: http://www.turbomole.com
Support is provided by COSMOlogic GmbH\&Co.KG, seehttp://www.cosmologic.de
Email: turbomole@cosmologic.de

1.2 Features of Turbomole

TURBOMOLE has been specially designed for UNIX workstations and PCs and efficiently exploits the capabilities of this type of hardware. TURBOMOLE consists of a series of modules; their use is facilitated by various tools.
Outstanding features of TURBOMOLE are

- semi-direct algorithms with adjustable main memory and disk space requirements
- full use of all point groups
- efficient integral evaluation
- stable and accurate grids for numerical integration
- low memory and disk space requirements

1.3 How to Quote Usage of Turbomole

Please quote the usage of the program package under consideration of the version number:

TURBOMOLE V6.3 2011, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.

A LaTeX template could look like this:
@misc\{TURBOMOLE,
title $=\{\{T U R B O M O L E ~ V 6.3$ 2011\}, a development of \{University of Karlsruhe\} and \{Forschungszentrum Karlsruhe GmbH\}, 1989-2007, \{TURBOMOLE GmbH\}, since 2007; available from

\{\tt http://www.turbomole.com\}.\}\}

Scientific publications require proper citation of methods and procedures employed. The output headers of TURBOMOLE modules include the relevant papers. One may also use the following connections between: method [module] number in the subsequent list (For module ricc2 see also Section 9).

- Programs and methods
- general program structure and features: $\mathbb{\square}$
- HF-SCF [dscf, ridft]: Π
- DFT (quadrature) [dscf, ridft, escf, aoforce]: IV, d (m grids)
- RI-DFT [ridft, aoforce, escf]: C. d, XXIII (marij), VII (escf), XXIV (aoforce)
- MP2 [mpgrad]: III
- RI-MP2 [rimp2]: VIII, f
- stability analysis [escf]: V
- electronic excitations by CIS, RPA, TD-DFT [escf]: VI, VII, XVIII, XXVII
- excited state structures and properties with CIS, RPA, TD-DFT [egrad]:XIX, XXVI, XXVII
- RI-CC2 [ricc2]: XII|XIII (triplet excitations) XIV (properties for triplet states) XV (transition moments and properties of excited states) XXI (ground state geometry optimizations), XXII (excited state geometry optimizations and orbital-relaxed properties), XXVIII (parallelization)
- analytical second derivatives (force fields) [aoforce]: XVI, XVII
- RI-JK [ridft]: XX
- NMR chemical shifts [mpshift]: IX (MP2)
- parallel DFT [ridft]: X
- geometry optimization in redundant internal coordinates [relax]: XI
- RI integral evaluation: XXV
- Orbital and auxiliary basis sets
- basis sets:
* SV, SV(P), SVP, DZ (a), TZV, TZVP, TZVPP (b), TZVPP(Rb-Hg) (ㄱ), QZV, QZVP, QZVPP (i)
* new balanced basis sets (with smaller ECPs, i.e. the def2 basis sets): [j
* all-electron basis sets for Rb to Xe (SVPall, SVPPall, TZVPall, TZVPPall):
* references for the correlation consistent basis sets (cc-pVXZ, etc.) can be found e.g. at
http://tyr0.chem.wsu.edu/~kipeters/Pages/cc_append.html or http://www.emsl.pnl.gov/forms/basisform.html.
Note, that most of the correlation consistent basis sets in the basis set library of TURBOMOLE have been downloaded from the latter EMSL web site and therefore users are requested to include in addition to the original scientific reference an appropriate citation (see web site) in any publications resulting from the use of these basis sets.
* property-optimized augmentations: def2-SVPD, def2-TZVPD, def2TZVPPD, def2-QZVPD, def2-QZVPPD (n).
* basis sets for Dirac-Fock ECPs, i.e. the dhf basis sets: 0 .
- auxiliary basis sets for RI-DFT: C, (d)
- auxiliary basis sets for RI-MP2: 国 h (for Dunning basis sets)

Further references of papers not from the TURBOMOLE group are given in the bibliography. The following publications describe details of the methodology implemented in TURBOMOLE:

Methods

I. Electronic Structure Calculations on Workstation Computers: The Program System TURBOMOLE. R. Ahlrichs, M. Bär, M. Häser, H. Horn and C. Kölmel; Chem. Phys. Letters 162, 165 (1989).
II. Improvements on the Direct SCF Method. M. Häser and R. Ahlrichs; J. Comput. Chem. 10, 104 (1989).
III. Semi-direct MP2 Gradient Evaluation on Workstation Computers: The MPGRAD Program. F. Haase and R. Ahlrichs; J. Comp. Chem. 14, 907 (1993).
IV. Efficient Molecular Numerical Integration Schemes.
O. Treutler and R. Ahlrichs; J. Chem. Phys. 102, 346 (1995).
V. Stability Analysis for Solutions of the Closed Shell Kohn-Sham Equation. R. Bauernschmitt and R. Ahlrichs; J. Chem. Phys. 104, 9047 (1996).
VI. Treatment of Electronic Excitations within the Adiabatic Approximation of Time Dependent Density Functional Theory.
R. Bauernschmitt and R. Ahlrichs; Chem. Phys. Letters 256, 454 (1996).
VII. Calculation of excitation energies within time-dependent density functional theory using auxiliary basis set expansions. R. Bauernschmitt, M. Häser, O. Treutler and R. Ahlrichs; Chem. Phys. Letters 264, 573 (1997).
VIII. RI-MP2: first derivatives and global consistency. F. Weigend and M. Häser; Theor. Chem. Acc. 97, 331 (1997).
IX. A direct implementation of the GIAO-MBPT(2) method for calculating NMR chemical shifts. Application to the naphthalenium and anthracenium ions. M. Kollwitz and J. Gauss; Chem. Phys. Letters 260, 639 (1996).
X. Parallelization of Density Functional and RI-Coulomb Approximation in TURbomole. M. v. Arnim and R. Ahlrichs; J. Comp. Chem. 19, 1746 (1998).
XI. Geometry optimization in generalized natural internal Coordinates. M. v. Arnim and R. Ahlrichs; J. Chem. Phys. 111, 9183 (1999).
XII. CC2 excitation energy calculations on large molecules using the resolution of the identity approximation. C. Hättig and F. Weigend; J. Chem. Phys. 113, 5154 (2000).
XIII. Implementation of RI-CC2 for triplet excitation energies with an application to trans-azobenzene. C. Hättig and Kasper Hald; Phys. Chem. Chem. Phys. 4 2111 (2002).
XIV. First-order properties for triplet excited states in the approximated Coupled Cluster model CC2 using an explicitly spin coupled basis. C. Hättig, A. Köhn and Kasper Hald; J. Chem. Phys. 116, 5401 (2002) and Vir. J. Nano. Sci. Tech., 5 (2002).
XV. Transition moments and excited-state first-order properties in the coupledcluster model CC2 using the resolution-of-the-identity approximation. C. Hättig and A. Köhn; J. Chem. Phys. 117, 6939 (2002).
XVI. An efficient implementation of second analytical derivatives for density functional methods. P. Deglmann, F. Furche and R. Ahlrichs; Chem. Phys. Letters 362, 511 (2002).
XVII. Efficient characterization of stationary points on potential energy surfaces.
P. Deglmann and F. Furche; J. Chem. Phys. 117, 9535 (2002).
XVIII. An improved method for density functional calculations of the frequency-dependent optical rotation.
S. Grimme, F. Furche and R. Ahlrichs; Chem. Phys. Letters 361,321 (2002).
XIX. Adiabatic time-dependent density functional methods for excited state properties. F. Furche and R. Ahlrichs; J. Chem. Phys. 117, 7433 (2002), J. Chem. Phys. 121, 12772 (2004) (E).
XX. A fully direct RI-HF algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency. F. Weigend, Phys. Chem. Chem. Phys. 4, 4285 (2002)
XXI. Geometry optimizations with the coupled-cluster model CC2 using the reso-lution-of-the-identity approximation. C. Hättig; J. Chem. Phys. 118, 7751, (2003).
XXII. Analytic gradients for excited states in the coupled-cluster model CC2 employing the resolution-of-the-identity approximation. A. Köhn and C. Hättig; J. Chem. Phys., 119, 5021, (2003).
XXIII. Fast evaluation of the Coulomb potential for electron densities using multipole accelerated resolution of identity approximation. M. Sierka, A. Hogekamp and R. Ahlrichs;J. Chem. Phys. 118, 9136, (2003).
XXIV. Nuclear second analytical derivative calculations using auxiliary basis set expansion. P. Deglmann, K. May, F. Furche and R. Ahlrichs; Chem. Phys. Letters 384, 103, (2004).
XXV. Efficient evaluation of three-center two-electron integrals over Gaussian functions. R. Ahlrichs; Phys. Chem. Chem. Phys. 6, 5119, (2004).
XXVI. Analytical time-dependent density functional derivative methods within the RI-J approximation, an approach to excited states of large molecules. D. Rappoport and F. Furche, J. Chem. Phys. 122, 064105 (2005).
XXVII. Density functional theory for excited states: equilibrium structure and electronic spectra. F. Furche and D. Rappoport, Ch. III of "Computational Photochemistry", Ed. by M. Olivucci, Vol. 16 of "Computational and Theoretical Chemistry", Elsevier, Amsterdam, 2005.
XXVIII. Distributed memory parallel implementation of energies and gradients for secondorder Møller-Plesset perturbation theory with the resolution-of-the-identity approximation. Christof Hättig, Arnim Hellweg, Andreas Köhn, Phys. Chem. Chem. Phys. 8, 1159-1169, (2006).
XXIX. Self-consistent treatment of spin-orbit interactions with efficient Hartree-Fock and density functional methods. Markus K. Armbruster, Florian Weigend, Christoph van Wüllen, Wim Klopper, Phys. Chem. Chem. Phys. 10, 1748 1756, (2008).

Basis sets

The following tables can be used to find the proper citations of the standard orbital and auxiliary basis sets in the TURBOMOLE basis set library.

Orbital basis sets, elements $\mathbf{H}-\mathrm{Kr}$

	H, He	Li	Be	B-Ne	Na, Mg	$\mathrm{Al}-\mathrm{Ar}$	K	Ca	$\mathrm{Sc}-\mathrm{Zn}$	$\mathrm{Ga}-\mathrm{Kr}$
SVP,SV(P)	p	a	a	a	a	a	a	a	a	a
TZVP	p	b	b	b	b	b	b	b	b	b
TZVPP	p	f]	f	f	f	f	f]	f	f	f
QZVP,QZVPP	- i i									
def2-SV(P)	p	j	a	a	j]	a	j	a	a	a
def2-SVP	p	j	a	a	j	a	j	a	j	a
def2-TZVP	p	f	j]	f	j	j	j	f	j	f
def2-TZVPP	p	j	j	f	j	j	j	f	j	f

Note: For $\mathrm{H}-\mathrm{Kr}$ def-S $\overline{\mathrm{V}}(\overline{\mathrm{P})}$, def-SV$\overline{\mathrm{P}}, \ldots$ are identical with the basis sets without def prefix. def2QZVPP and def2-QZVP are identical with QZVPP and QZVP.

Orbital basis sets, elements Rb-Rn

	Rb	Sr	Y-Cd	In-Cs	Ba	La-Hg	Tl-At	Rn
def-SVP,def-SV(P),def-TZVP	d	d	d	d	d	d	d	j
def-TZVPP	f	d	f	f	d	f	d	j
def2-SV(P)	j	d	d	j	d	d	j	j
def2-SVP	j	d	j]	j	d	j	j	j
def2-TZVP,def2-TZVPP					j]			
def2-QZVP,def2-QZVP					j			

Auxiliary basis sets for RI-DFT (Coulomb fitting)

	$\mathrm{H}-\mathrm{Kr}$	Rb-At	Rn
(def-)SVP,(def-)SV(P)	c	d	[1]
(def-)TZVP	d	d	1
def2 universal	$1-$		

Auxiliary basis sets for RI-MP2 and RI-CC2, elements $\mathrm{H}-\mathrm{Kr}$

	H	He	Li	Be	B-F	Ne	Na, Mg	Al-Cl	Ar	K	Ca	$\mathrm{Sc}-\mathrm{Zn}$	$\mathrm{Ga}-\mathrm{Br}$	Kr
SVP,SV(P)	f	k	f	f	f	k	f	f	k	F	f	f	f	k
TZVP,TZVPP	f	k	f	f	f	k	f	f	k	f	\pm	f	\ddagger	k
QZVP,QZVPP														
def2-SV(P)	f	k	m	f	f	k	m	f	k	m	f	f	f	K
def2-SVP	f	k	m	f1	f	k	m	f	k	m	1	m	${ }^{+1}$	k
def2-TZVP, def2-TZVPP	f	k	I	\underline{m}	f	k	m	$\underline{\mathrm{m}}$	k	m	f	m	f	k
(aug-)cc-pVXZ, X=D-Q	h	h	k	k	h	h	k	h	h				h	h
(aug-)cc-pV5Z	k	k	-	-	k	k	-	k	k	-	-	-	-	
cc-pWXZ, X=D-5	-	-	-	-	k	k	-	k	k	-	-	-	-	-

Note: the auxiliary basis sets for the (aug-)cc-pV(X+d)Z basis sets for $\mathrm{Al}-\mathrm{Ar}$ are identical with the (aug-)cc-pVXZ auxiliary basis sets.

Auxiliary basis sets for RI-MP2 and RI-CC2, elements Rb-Rn

	Rb	Sr	Y-Cd	In-Cs	Ba	La-Hg	Tl-At	Rn
def-SVP,def-SV(P)	- - f^{f}							m
def2-SVP,def2-SV(P)	m	[f	m	f	f	m	m
def-TZVP,def-TZVPP								m
def2-TZVP,def2-TZVPP	m							
def2-QZVP,def2-QZVP	m							

a. Fully Optimized Contracted Gaussian Basis Sets for Atoms Li to Kr. A. Schäfer, H. Horn and R. Ahlrichs; J. Chem. Phys. 97, 2571 (1992).
b. Fully Optimized Contracted Gaussian Basis Sets of Triple Zeta Valence Quality for Atoms Li to Kr. A. Schäfer, C. Huber and R. Ahlrichs; J. Chem. Phys. 100, 5829 (1994).
c. Auxiliary Basis Sets to Approximate Coulomb Potentials. K. Eichkorn, O. Treutler, H. Öhm, M. Häser and R. Ahlrichs; Chem. Phys. Letters 242, 652 (1995).
d. Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. K. Eichkorn, F. Weigend, O. Treutler and R. Ahlrichs; Theor. Chem. Acc. 97, 119 (1997).
e. Accurate Coulomb-fitting basis sets for H to Rn. F. Weigend; Phys. Chem. Chem. Phys. 8, 1057 (2006).
f. RI-MP2: Optimized Auxiliary Basis Sets and Demonstration of Efficiency. F. Weigend, M. Häser, H. Patzelt and R. Ahlrichs; Chem. Phys. Letters 294, 143 (1998).
g. Contracted all-electron Gaussian basis sets for Rb to Xe. R. Ahlrichs and K. May; Phys. Chem. Chem. Phys., 2, 943 (2000).
h. Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations. F. Weigend, A. Köhn and C. Hättig; J. Chem. Phys. 116, 3175 (2002).
i. Gaussian basis sets of quadruple zeta valence quality for atoms $\mathrm{H}-\mathrm{Kr}$. F. Weigend, F. Furche and R. Ahlrichs; J. Chem. Phys. 119, 12753 (2003).
j. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design an assessment of accuracy. F. Weigend and R. Ahlrichs; Phys. Chem. Chem. Phys. 7, 3297 (2005).
k. Optimization of auxiliary basis sets for RI-MP2 and RI-CC2 calculation: Corevalence and quintuple- ζ basis sets for H to Ar and QZVPP basis sets for Li to Kr. C. Hättig; Phys. Chem. Chem. Phys. 7, 59 (2005).

1. Accurate Coulomb-fitting basis sets for H to Rn. F. Weigend; Phys. Chem. Chem. Phys. 8, 1057 (2006).
m. Optimized accurate auxiliary basis sets for RI-MP2 and RI-CC2 calculations for the atoms Rb to Rn. A. Hellweg, C. Hättig, S. Höfener and W. Klopper; Theor. Chem. Acc. 117, 587 (2007).
n. Property-optimized Gaussian basis sets for molecular response calculations. D. Rappoport and F. Furche; J. Chem. Phys. 133, 134105 (2010).
o. Segmented contracted basis sets for one- and two-component Dirac-Fock effective core potentials. F. Weigend and A. Baldes; J. Chem. Phys. 133, 174102 (2010).
p. unpublished.

1.4 Modules and Their Functionality

For references see Bibliography.
define interactive input generator which creates the input file control. define supports most basis sets in use, especially the only fully atom optimized consistent basis sets of SVP and TZV quality $[2,3,4,5,5,6$ available for the atoms $\mathrm{H}-\mathrm{Rn}$, excluding lanthanides. define determines the molecular symmetry and internal coordinates allowing efficient geometry optimization. define allows to perform a geometry optimization at a force field level to preoptimize the geometry and to calculate a Cartesian Hessian matrix. define sets the keywords necessary for single point calculations and geometry optimizations within a variety of methods. There are also many features to manipulate geometries of molecules: just try and see how it works.
uff performs a geometry optimization at a force field level. The Universal Force Field (UFF) 7 is implemented. Beyond this it calculates an analytical Hessian (Cartesian) which will be used as a start Hessian for an $a b$ initio geometry optimization.
dscf for (semi-)direct SCF-HF and DFT calculations (see keywords for functionals supported). dscf supports restricted closed-shell (RHF), spinrestricted ROHF as well as UHF runs. dscf includes an in-core version for small molecules.
grad requires a successful dscf run and calculates the gradient of the energy with respect to nuclear coordinates for all cases treated by dscf.
ridft perform (direct) SCF-HF and DFT calculations-as dscf and grad-
and
rdgrad within the very efficient RI- J approximation for the interelectronic Coulomb term. These programs also permit to approximate HF exchange within the RI- K approximation. The exchange correlation functionals supported are specified in define.
mpgrad requires a well converged SCF run-by dscf, see keywords-and performs closed-shell RHF or UHF calculations yielding single point MP2 energies and, if desired, the corresponding gradient.
rimp2 calculates MP2 energies and gradients for RHF and UHF wavefunctions, significantly more efficient than mpgrad by using the RI technique [8,9].
ricc2 calculates electronic excitation energies, transition moments and properties of excited states at the CIS, CIS(D), $\operatorname{ADC}(2)$ and CC 2 level using either a closed-shell RHF or a UHF SCF reference function. Calculates R12 basis set limit correction for MP2 energies. Employs the RI technique to approximate two-electron integrals. Includes as a subset also the functionalities of the rimp2 program $[10,11,12,13$.
relax requires a gradient run-by grad, rdgrad, rimp2 or mpgrad-and proposes a new structure based on the gradient and the approximated force constants. The approximated force constants will be updated.
statpt performs structure optimization using the "Trust Radius Image Minimization" algorithm. It can be used to find minima or transition structures (first order saddle points). Transition structure searches usually require initial Hessian matrix calculated analytically or the transition vector from the lowest eigenvalue search.
frog executes one molecular dynamics (MD) step. Like relax, it follows a gradient run: these gradients are used as classical Newtonian forces to alter the velocities and coordinates of the nuclei.
aoforce requires a well converged SCF or DFT run-by dscf or ridft, see keywords - and performs an analytic calculation of force constants, vibrational frequencies and IR intensities. aoforce is also able to calculate only the lowest Hessian eigenvalues with the corresponding eigenvectors which reduces computational cost. The numerical calculation of force constants is also possible (see tool Numforce in Section 1.5).
escf requires a well converged SCF or DFT run and calculates time dependent and dielectric properties (spin-restricted closed-shell or spinunrestricted open-shell reference):

- static and frequency-dependent polarizabilities within the SCF approximation
- static and frequency-dependent polarizabilities within the timedependent Kohn-Sham formalism, including hybrid functionals such as B3-LYP
- electronic excitations within the RHF and UHF CI(S) restricted CI method
- electronic excitations within the so-called SCF-RPA approximation (poles of the frequency dependent polarizability)
- electronic excitations within the time dependent Kohn-Sham formalism (adiabatic approximation). It can be very efficient to use the RI approximation here, provided that the functional is of nonhybrid type: we recommend B-P86 (but slightly better results are obtained for the hybrid functional B3-LYP) [14].
-stability analysis of single-determinant closed-shell wave functions (second derivative of energy with respect to orbital rotations) [15].
computes gradients and first-order properties of excited states. Well converged orbitals are required. The following methods are available for spin-restricted closed shell or spin-unrestricted open-shell reference states:
- CI-Singles approximation (TDA)
- Time-dependent Hartree-Fock method (RPA)
- Time-dependent density functional methods
egrad can be employed in geometry optimization of excited states (using jobex, see Section 5.1), and in finite difference force constant calculations (using Numforce). Details see (16].
mpshift requires a converged SCF or DFT run for closed shells. mpshift computes NMR chemical shieldings for all atoms of the molecule at the SCF, DFT or MP2 level within the GIAO ansatz and the (CPHF) SCF approximation. From this one gets the NMR chemical shifts by comparison with the shieldings for the standard compound usually employed for this purpose, e.g. TMS for carbon shifts. Note that NMR shielding typically requires more flexible basis sets than necessary for geometries or energies. ECPs are not supported in mpshift (17.
freeh calculates thermodynamic functions from molecular data in a control file; an aoforce or a NumForce run is a necessary prerequisite.
intense calculates Raman scattering cross sections from molecular data in a control file; an aoforce and an egrad run are a necessary prerequisite. Please use the Raman script to run these three steps in an automated way.

1.5 Tools

Note: these tools are very helpful and meaningful for many features of TURBOMOLE.
This is a brief description of additional TURBOMOLE tools. Further information will be available by running the programs with the argument -help.

```
Actual please use: actual -help
```

Aoforce2g98 usage: aoforce2g98 aoforce.out > g98.out
converts output from the aoforce program to Gaussian 98 style, which can be interpreted by some molecular viewer (e.g. jmol) to animate the normal coordinates.

Bend example: bend 123
displays the bending angle of three atoms specified by their number from the control file. Note that unlike in the TURBOMOLE definition of internal coordinates the apex atom is the second!

Cbasopt optimize auxiliary basis sets for RI-MP2 and RI-CC2 calculations. Uses ricc2 to calculate the error functional and its gradient and relax as optimization module. For further details call cbasopt -h.

Cgnce	plots energies as a function of SCF iteration number (gnuplot required).
Cosmoprep	sets up control file for a cosmo run (see Chapter 144).
Dist	example: dist 12 calculates atomic distances from TURBOMOLE input files; dist -1 4 gives all interatomic distances to 4 a.u. (5 a.u. is the default).
Eiger	displays orbital eigenvalues obtained from data group \$scfmo. Shows HOMO-LUMO gap, occupation, checks if there are holes in the occupation, and much more.
Evalgrad	reads the gradient file and prints the energies of each cycle versus bond lengths or angles. Five operational modes are possible: evalgrad prints the energy. evalgrad 1 prints the coordinate of atom 1 . evalgrad 12 prints the distance between atoms 1 and 2 . evalgrad 123 prints the bending angle as defined in Bend. evalgrad 1234 prints the torsional angle as defined in Tors.
Hcore	prepares the control file for a Hamilton core guess (RHF only).
Jobex	usage: see Section 5.1 is the TURBOMOLE driver for all kinds of optimizations.
Kdg	example: kdg scfdiis kills a data group (here \$scfdiis) in the control file.
Lhfprep	prepares for Localized Hartree-Fock calculations by adjusting parameters of the control file.
Log2x	converts the file logging an MD trajectory into coordinates in frames appropriate for jmol animation program.
Log2egy	extracts the energy data (KE, total energy, PE) from an MD log file.
Mdprep	interactive program to prepare for an MD run, checking in particular the mdmaster file (mdprep is actually a FORTRAN program).
Mp2prep	prepares MP2 calculations interactively by adjusting parameters of the control file according to your system resources.
Numforce	calculates numerically force constants, vibrational frequencies, and IR intensities. (Note that the name of the shell script is NumForce with capital F.)
Outp	example: outp 1234 displays the out-of-plan angle between atom1 and the plane that is defined by the last three atoms. atom1 is fixed at atom4.

Raman	calculates vibrational frequencies and Raman intensities. See Section 11.2 for explanation.
Screwer	distorts a molecule along a vibrational mode.
Sdg	shows data group from control file: for example sdg energy shows the list of calculated energies.
Sysname	returns the name of your system, used in almost all TURBOMOLE scripts.
Stati	prepares the control file for a statistics run.
T2x	converts TURBOMOLE coordinates to xyz format.
Tm2aomix	creates an input file for the AOMix program. AOMix a software the analysis of molecular orbitals. For more information see: (http://www.sg-chem.net/aomix).
Tm2molden	creates a molden format input file for the Molden program. Molden is a graphical interface for displaying the molecular density, MOs, normal modes, and reaction paths. For more information about molden see: (http://www.cmbi.ru.nl/molden/molden.html).
Tors	is a script to query a dihedral angle in a molecular structure: e.g. tors 1234 gives the torsional angle of atom 4 out of the plane of atoms 1,2 and 3 .
Tbtim	is used to convert timings output files from Turbobench calculations to $\mathrm{LA}_{\mathrm{E}} \mathrm{EXtables}$ (for options please type TBTIM --help).
Tblist	is used to produce summaries of timings from Turbobench calculations to ${ }^{A} T_{E}$ Xformat. (for options please type TBLIST --help).
Uhfuse	transforms the UHF MOs from a given symmetry to another symmetry, which is C_{1} by default (just enter uhfuse). but can be specified (e.g. as $C_{2 v}$) by entering uhfuse -s c 2 v . Now this functionality is included in the MO definition menu of define program, see Section 4.3.1.
x2t	converts standard xyz files into TURBOMOLE coordinates.

Chapter 2

Installation of Turbomole

Installation requires familiarity with some simple UNIX commands. The TURBOMOLE package is generally shipped as one tar file. This has to be uncompressed

```
gunzip turbomole_63.tar.gz
```

and unpacked

```
tar -xvf turbomole_63.tar
```

to produce the whole directory structure.
Note: Do not install or run TURBOMOLE as root or with root permissions!
Executable modules are in the bin/[arch] directory (for example, IBM modules are in bin/rs6000-ibm-aix-5.3). Tools (including jobex) are in scripts and (auxiliary) basis sets are kept in the directories basen, jbasen, jkbasen and cbasen. Coordinates for some common chemical fragments are supplied in structures. The documentation and a tutorial can be found in the folder DOC.

The environmental variable \$TURBODIR must be set to the directory where TURBOMOLE has been unpacked, for example:
TURBODIR=/my_disk/my_name/TURBOMOLE

Check that the Sysname tool works on your computer:
\$TURBODIR/scripts/sysname
should return the name of your system and this should match a bin/[arch] subdirectory.
If Sysname does not print out a single string matching a directory name in \$TURBODIR/bin/, and if one of the existing binary versions does work, you can force sysname to print out whatever is set in the environment variable \$TURBOMOLE_SYSNAME:

```
TURBOMOLE_SYSNAME=em64t-unknown-linux-gnu
```

Please make sure not to append _mpi or _smp to the string when setting \$TURBOMOLE_SYSNAME, even if you intend to run parallel calculations. sysname will append this string automatically to the system name if \$PARA_ARCH is set to MPI or SMP (see chapter 3.2.1 how to set up parallel environment).
You can call TURBOMOLE executables and tools easily from anywhere if you add the corresponding directories to your path (kornshell or bash):

```
PATH=$PATH:$TURBODIR/scripts
PATH=$PATH:$TURBODIR/bin/'sysname'
```

Now the TURBOMOLE executables can be called from a directory with the required input files. For example to call dscf and save the output:
\$TURBODIR/bin/'sysname'/dscf > dscf.out
or if the path is OK, simply

```
dscf > dscf.out
```

In addition, some sample calculations are supplied in Turbotest so that the modules can be tested. Just run TTEST from this directory to run all tests or TTEST -help to get help on how this works.

Chapter 3

How to Run Turbomole

3.1 A 'Quick and Dirty' Tutorial

A detailed tutorial for the usage of TURBOMOLE on the command line can be found in the DOC directory of your TURBOMOLE installation or on the web site of COSMOlogic, see http://www.cosmologic.de/
All TURBOMOLE modules need the control file as input file. The control file provides directly or by cross references the information necessary for all kinds of runs and tasks (see Section 15). define provides step by step the control file: Coordinates, atomic attributes (e.g. basis sets), MO start vectors and keywords specific for the desired method of calculation. We recommend generating a set of Cartesian coordinates for the desired molecule using special molecular design software and converting this set into TURBOMOLE format (see Section 16.2) as input for define. Alternatively the graphical user interface TmoleX can be used to import and/or build molecules.
A straightforward way to perform a TURBOMOLE calculation from scratch is as follows:

- generate your atomic coordinates by any tool or program you are familiar with,
- save it as an .xyz file which is a standard output format of all programs, or use a conversion tool like babel,
- use the TURBOMOLE script $x 2 t$ to convert your . xyz file to the TURBOMOLE coord file:

```
x2t xyzinputfile > coord
```

- since input files for TURBOMOLE are always called control, each input has to be placed in a different directory. Create a new directory and copy the coord file there,
- call define; after specifying the title, you get the coord menujust enter a coord to read in the coordinates. Use desy to let define determine the point group automatically.

If you want to do geometry optimizations, we recommend to use generalized internal coordinates; ired generates them automatically.

- you may then go through the menus without doing anything: just press <Enter>, * or q-whatever ends the menu, or by confirming the proposed decision of define again by just pressing <Enter>.
This way you get the necessary specifications for a (SCF-based) run with SV(P) as the default basis set which is roughly $6-31 \mathrm{G}^{*}$.
- for more accurate SCF or DFT calculations choose larger basis sets, e.g. TZVP by entering b all def-TZVP or b all def2-TZVP in the basis set menu.
- ECPs which include (scalar) relativistic corrections are automatically used beyond Kr.
- an initial guess for MOs and occupation numbers is provided by eht
- for DFT you have to enter dft in the last menu and then enter on
- for efficient DFT calculations you best choose the RI approximation by entering ri and providing roughly $3 / 4$ of the memory (with m number; number in MB) your computer has available. (Auxiliary basis sets are provided automatically) In the printout of an ridft run you can check how much is really needed; a top statement will tell you if you overplayed your cards.
- B-P86 is the default functional. It has a good and stable performance throughout the periodic system.
- for an HF or DFT run without RI, you simply enter:
[nohup] dscf > dscf.out \&
or, for a RI-DFT run:
[nohup] ridft > ridft.out \&
- for a gradient run, you simply enter:
[nohup] grad > grad.out \&
or
[nohup] rdgrad > rdgrad.out \&
- for a geometry optimization simply call jobex:
for a standard SCF input:
[nohup] jobex \&
for a standard RI-DFT input:
[nohup] jobex -ri \&
- many features, such as NMR chemical shifts on SCF and DFT level, do not require further modifications of the input, just call e.g. mpshift after the appropriate energy calculation (mpshift runs with SCF or DFT using a hybridfunctional need a file size of the semi-direct file twoint that is non-zero).
- other features, such as post-SCF methods need further action on the input, using either the last menu of define where one can activate all settings needed for DFT, TDDFT, MP2, CC2, etc. calculations (this is the recommended way), or tools like Mp2prep or Rimp2prep. Please refer to the following pages of this documentation.

3.1.1 Single Point Calculations: Running Turbomole Modules

All calculations are carried out in a similar way. First you have to run define to obtain the control file or to add/change the keywords you need for your purpose. This can also be done manually with an editor. Given a bash and a path to \$TURBODIR/bin/[arch] (see installation, Chapter 2) you call the appropriate module in the following way (e.g. module dscf):

```
nohup dscf > dscf.out &
```

nohup means that the command is immune to hangups, logouts, and quits. \& runs a background command. The output will be written to the file dscf.out. Several modules write some additional output to the control file. For the required keywords see Section 15. The features of TURBOMOLE will be described in the following section.

3.1.2 Energy and Gradient Calculations

Energy calculations may be carried out at different levels of theory.

Hartree-Fock-SCF

use modules dscf and grad or ridft and rdgrad to obtain the energy and gradient. The energy can be calculated after a define run without any previous runs. dscf and grad need no further keywords ridft and rdgrad only need the keyword \$rij. The gradient calculation however requires a converged dscf or ridft run.

Density functional theory
DFT calculations are carried out in exactly the same way as Hartree-Fock calculations except for the additional keyword \$dft. For DFT calculations with the fast Coulomb approximation you have to use the modules ridft and rdgrad instead of dscf and grad. Be careful: dscf and grad ignore RI- K flags and will try to do a normal calculation, but they will not ignore RI- J flags (\$rij) and stop with an error message. To obtain correct derivatives of the DFT energy expression in grad or rdgrad the program also has to consider derivatives of the quadrature weights - this option can be enabled by adding the keyword weight derivatives to the data group \$dft.
For a semi-direct dscf calculation (Hartree-Fock or DFT) you first have to perform a statistics run. If you type

```
    stati dscf
nohup dscf > dscf.stat &
```

the disk space requirement (MB) of your current \$thime and \$thize combination will be computed and written to the data group $\$$ scfintunit size=integer (see Section 15.2.5). The requirement of other combinations will be computed as well and be written to the output file dscf.stat. The size of the integral file can be set by the user to an arbitrary (but reasonable) number. The file will be written until it reaches the given size and dscf will continue in direct mode for the remaining integrals. Note that TURBOMOLE has no 2GB file size limit.

MP2
MP2 calculations need well converged SCF runs (the SCF run has to be done with at least the density convergence $\$$ denconv $1 . d-7$, and $\$ s c f c o n v 7$ as described in Section 15). This applies to CC2 or SCS-MP2 also. For MP2 calculations in the RI approximation use the ricc2 module. The input can be prepared with the cc2 menu in define. (Alternatively, the older rimp2 module and for preparation of its input the tool Rimp2prep maybe used). The module mpgrad calculates the canonical (non-RI) MP2 energy as well as the energy gradient. If only the energy is desired use the keyword \$mp2energy. For all further preparations run the tool Mp2prep.

Excited states (escf)

Single point excited state energies for CIS, TDHF, and TDDFT methods can be calculated using escf. Excited state energies, gradients, and other first order properties are provided by egrad. Both modules require well converged ground state orbitals.

Excited states (ricc2)
The module ricc2 calculates MP2 and CC2 ground state energies and CIS/CCS, CIS(D), $\operatorname{CIS}\left(\mathrm{D}_{\infty}\right), \operatorname{ADC}(2)$ or CC2 excitation energies using the resolution-of-the-identity (RI) approximation. Excited state gradients are available at the CCS, $\operatorname{CIS}\left(\mathrm{D}_{\infty}\right), \operatorname{ADC}(2)$, and CC 2 levels. In addition, transition moments and first-order properties are available for some of the methods. For more details see Section 9. The input can be prepared using the cc2 menu of define.

3.1.3 Calculation of Molecular Properties

See Section 1.4 for the functionality and Section 15 for the required keywords of the modules dscf, ridft, mpshift, escf, and ricc2.

3.1.4 Modules and Data Flow

See Figure 3.1.

Figure 3.1: The modules of TURBOMOLE and the main data flow between them.

3.2 Parallel Runs

Some of the TURBOMOLE modules are parallelized using the message passing interface (MPI) for distributed and shared memory machines or with OpenMP or multithreaded techniques for shared memory and multi-core machines.
Generally there are two hardware scenarios which determine the kind of parallelization that is possible to use:

- On a single node with several CPUs and/or cores using the same memory (shared memory), the user can run all parallelized modules of TURBOMOLE . For some modules, both shared-memory and MPI versions are available, but it is recommended not to use the latter ones for performance reasons.
How to run the parallel TURBOMOLE SMP version on multi-core and/or multiCPU systems: Please see chapter 3.2.2.
- On a cluster a parallel calculation can be performed using several distinct nodes, each one with local memory and disks. This can be done with the MPI version.
How to run the parallel TURBOMOLE MPI version on clusters: Please see chapter 3.2.1.

The list of parallelized programs includes presently:

- ridft - parallel ground state Hartree-Fock and DFT energies including RI-J and the multipole accelerated RI (MA-RI-J)
- rdgrad - parallel ground state gradients from ridft calculations
- dscf - Hartree-Fock and DFT ground state calculations for all available DFT functionals, without the usage of RI-J approximation
- grad - parallel ground state gradients from dscf calculations
- ricc2 - parallel ground and excited state calculations of energies and gradients at MP2 and CC2 level using RI, as well as energy calculations of other wave function models, see chapter 9.5 .
- mpgrad - parallel conventional (i.e. non-RI) MP2 energy and gradient calculations. Please note that RI-MP2 is one to two orders of magnitude faster than conventional MP2, so even serial RI-MP2 will be faster than parallel MP2 calculations.
- aoforce - parallel Hartree-Fock and DFT analytic 2nd derivatives for vibrational frequencies, IR spectra, generation of Hessian for transition state searches and check for minimum structures. SMP only.
- escf - parallel TDDFT, RPA, CIS excited state calculations (UV-Vis and CD spectra, polarizabilities). SMP only.
- egrad - parallel TDDFT, RPA, CIS excited state analytic gradients, including polarizability derivatives for RAMAN spectra. SMP only.
- NumForce - this script can used for a trivial parallelization of the numerical displaced coordinates.

Additional keywords necessary for parallel runs with the MPI binaries are described in Chapter 15. However, those keywords do not have to be set by the users. When using the parallel version of TURBOMOLE, scripts are replacing the binaries. Those scripts prepare a usual input, run the necessary steps and automatically start the parallel programs. The users just have to set environment variables, see Sec. 3.2.1 below.

To use the OpenMP parallelization only an environment variable needs to be set. But to use this parallelization efficiently one should consider a few additional points, e.g. memory usage, which are described in Sec. 3.2.2.

3.2.1 Running Parallel Jobs - MPI case

The parallel version of TURBOMOLE runs on all supported systems:

- workstation cluster with Ethernet, Infiniband, Myrinet (or other) connection
- SMP systems
- or combinations of SMP and cluster

Setting up the parallel MPI environment

In addition to the installation steps described in Section 2 (see page 27) you just have to set the variable PARA_ARCH to MPI, i.e. in sh/bash/ksh syntax:
export PARA_ARCH=MPI
This will cause sysname to append the string _mpi to the system name and the scripts like jobex will take the parallel binaries by default. To call the parallel versions of the programs ridft, rdgrad, dscf, grad, ricc2, or mpgrad from your command line without explicit path, expand your \$PATH environment variable to:

```
export PATH=$TURBODIR/bin/`sysname`:$PATH
```

The usual binaries are replaced now by scripts that prepare the input for a parallel run and start mpirun (or poe on IBM) automatically. The number of CPUs that shall be used can be chosen by setting the environment variable PARNODES:

The default for PARNODES is 2 .
Finally the user can set a default scratch directory that must be available on all nodes. Writing scratch files to local directories is highly recommended, otherwise the scratch files will be written over the network to the same directory where the input is located. The path to the local disk can be set with
export TURBOTMPDIR=/scratch/username/

This setting is automatically recognized by the parallel ridft and ricc2 programs. Note that this does not set the path for the integer scratch files for dscf (see section below about twoint of keyword \$scfintunit).
If TURBOTMPDIR is not set by the user, ridft will check for a /tmp, /scr, or /work directory. If one of those is found, it will be used by default.

On all systems TURBOMOLE is using the MPI library that has been shipped with your operating system.

On Linux for PCs and Itanium2 systems Platform MPI (formerly known as HPMPI) is used - see
Platform MPI
COSMOlogic ships TURBOMOLE with a licensed Platform MPI. TURBOMOLE users do not have to install or license Platform MPI themselves. Parallel binaries will run out of the box on the fastest interconnect that is found - Infiniband, Myrinet, TCP/IP, etc.

The binaries that initialize MPI and start the parallel binaries (mpirun) are located in the \$TURBODIR/mpirun_scripts/HPMPI/ directory.

Note: the parallel TURBOMOLE modules (except ricc2) need an extra server running in addition to the clients. This server is included in the parallel binaries and it will be started automatically-but this results in one additional task that usually does not need any CPU time. So if you are setting PARNODES to $\mathrm{N}, \mathrm{N}+1$ tasks will be started.
If you are using a queuing system or if you give a list of hosts where TURBOMOLE jobs shall run on (see below), make sure that the number of supplied nodes match \$PARNODES - e.g. if you are using 4 CPUs via a queuing system, make sure that \$PARNODES is set to 4.

On IBM systems the total number of tasks in the LoadLeveller script must be set to \$PARNODES + 1 except for ricc2.

Starting parallel jobs

After setting up the parallel environment as described in the previous section, parallel jobs can be started just like the serial ones. If the input is a serial one, it will be prepared automatically for the parallel run.
The parallel versions of the programs dscf and grad need an integral statistics file as input which is generated by a parallel statistics run. This preparation step is done
automatically by the scripts dscf and grad that are called in the parallel version. In this preparing step the size of the file that holds the 2 e -integrals for semi-direct calculations twoint is recalculated and reset. It is highly recommended to set the path of this twoint file to a local scratch directory of each node by changing the line.

```
unit=30 size=????? file=twoint
```

to

```
unit=30 size=????? file=/local_scratchdir/twoint
```

For the additional mandatory or optional input for parallel runs with the ricc2 program see Section 9.5 .

Running calculations on different nodes

If TURBOMOLE is supposed to run on a cluster, we highly recommed the usage of a queuing system like PBS. The parallel version of TURBOMOLE will automatically recognise that it is started from within the PBS environment and the binaries will run on the machines PBS provides for each job.

Important: Make sure that the input files are located on a network directory like an NFS disk which can be accessed on all nodes that participate at the calculation.
A file that contains a list of machines has to be created, each line containing one machine name:

```
node1
node1
node2
node3
node4
node4
```

And the environment variable \$HOSTS_FILE has to be set to that file:

```
export HOSTS_FILE=/nfshome/username/hostsfile
```

Note: Do not forget to set \$PARNODES to the number of lines in \$HOSTS_FILE.
Note: In general the stack size limit has to be raised to a reasonable amount of the memory (or to ulimited). In the serial version the user can set this by ulimit -s unlimited on bash/sh/ksh shells or limit stacksize unlimited on csh/tcsh shells. However, for the parallel version that is not sufficient if several nodes are used, and the /etc/security/limits.conf files on all nodes might have to be changed. Please see the following web site for details: Turbomole User Forum

Testing the parallel binaries

The binaries ridft, rdgrad, dscf, grad, and ricc2 can be tested by the usual test suite: go to \$TURBODIR/TURBOTEST and call TTEST

Note: Some of the tests are very small and will only pass properly if 2 CPUs are used at maximum. Therefore TTEST will not run any test if \$PARNODES is set to a higher value than 2 .
If you want to run some of the larger tests with more CPUs, you have to edit the DEFCRIT file in TURBOMOLE/TURBOTEST and change the \$defmaxnodes option.

Linear Algebra Settings

The number of CPUs and the algorithm of the linear algebra part of Turbomole depends on the settings of \$parallel_platform:
cluster - for clusters with TCP/IP interconnect. Communication is avoided by using an algorithm that includes only one or few CPUs.

MPP - for clusters with fast interconnect like Infiniband or Myrinet. Number of CPUs that take part at the calculation of the linear algebra routines depends on the size of the input and the number of nodes that are used.

SMP - all CPUs are used and SCALapack (see http://www.netlib.org/scalapack/) routines are involved.

The scripts in \$TURBODIR/mpirun_scripts automatically set this keyword depending on the output of sysname. All options can be used on all systems, but especially the SMP setting can slow down the calculation if used on a cluster with high latency or small bandwidth.

Sample simple PBS start script

\#!/bin/sh

```
# Name of your run :
```

\#PBS -N turbomole
\#
\# Number of nodes to run on:
\#PBS -l nodes=4
\#
\# Export environment:
\#PBS -V
\# Set your TURBOMOLE pathes:

```
export TURBODIR=/whereis/TURBOMOLE
################################################################
export PATH=$TURBODIR/scripts:$PATH
## set locale to C
unset LANG
unset LC_CTYPE
# set stack size limit to unlimited:
ulimit -s unlimited
# Count the number of nodes
PBS_L_NODENUMBER='wc -l < $PBS_NODEFILE'
# Check if this is a parallel job
if [ $PBS_L_NODENUMBER -gt 1 ]; then
##### Parallel job
# Set environment variables for a MPI job
        export PARA_ARCH=MPI
        export PATH="${TURBODIR}/bin/'sysname':${PATH}"
        export PARNODES=`expr $PBS_L_NODENUMBER'
else
##### Sequentiel job
# set the PATH for Turbomole calculations
        export PATH="${TURBODIR}/bin/'sysname':${PATH}"
fi
######## ENTER YOUR JOB HERE ##################################
jobex -ri > jobex.out
################################################################
```


3.2.2 Running Parallel Jobs - SMP case

The SMP version of TURBOMOLE currently combines three different parallelization schemes which all use shared memory:

- dscf and ricc2 are also partially parallelized with OpenMP for applications on shared-memory, in particular multi-CPU and multi-core, machines.
- aoforce, escf and egrad are currently parallelized as described in (18)
- ridft and rdgrad are parallelized with MPI using the Global Arrays toolkit, but use shared memory on SMP systems.

Setting up the parallel SMP environment

In addition to the installation steps described in Section 2 (see page 27) you just have to set the variable PARA_ARCH to SMP, i.e. in sh/bash/ksh syntax:

```
export PARA_ARCH=SMP
```

This will cause sysname to append the string _smp to the system name and the scripts like jobex will take the parallel binaries by default. To call the parallel versions of the programs ridft, rdgrad, dscf, ricc2, aoforce, escf or egrad from your command line without explicit path, expand your \$PATH environment variable to:
export PATH=\$TURBODIR/bin/'sysname‘:\$PATH
The usual binaries are replaced now by scripts that prepare the input for a parallel run and start the job automatically. The number of CPUs that shall be used can be chosen by setting the environment variable PARNODES:
export PARNODES=8
The default for PARNODES is 2 .
NOTE: Depending on what you are going to run, some care has to be taken that the system settings like memory limits, etc. will not prevent the parallel versions to run. See the following sections.

OpenMP parallelization of dscf and ricc2

The OpenMP parallelization does not need any special program startup. The binaries can be invoked in exactly the same manner as for sequential (non-parallel) calculations. The only difference is, that before the program is started the environment variable PARNODES has to be set to the number or threads that should be used by the program, the scripts will set OMP_NUM_THREADS to the same value and start the OpenMP binaries. The number of threads is essentially the max. number of CPU cores the program will try to utilize. To exploit e.g. all eight cores of a machine with two quad-core CPUs set

```
export PARNODES=8
```

(for csh and tcsh use setenv PARNODES=8).
Presently the OpenMP parallelization of ricc2 comprises all functionalities apart from the recently LT-SOS-RI-MP2, and the calculation of expectation values for \hat{S}^{2}. Note that the memory specified with \$maxcor is for OpenMP-parallel calculation the maximum amount of memory that will be dynamically allocated by all threads together. To use your computational resources efficiently, it is recommended to set
this value to about 75% of the physical memory available for your calculations, but to at most 16000 (megabytes). (Due to the use of integer*4 arithmetics the ricc2 program is presently limited to 16 Gbytes.)

In the dscf program the OpenMP parallelization covers presently only the HartreeFock coulomb and exchange contributions to the Fock matrix in fully integral-direct mode and is mainly intended to be used in combination with OpenMP parallel runs of ricc2. Nevertheless, the OpenMP parallelization can also be used in DFT calculations, but the numerical integration for the DFT contribution to the Fock matrix will only use a single thread (CPU core) and thus the overall speed up will be less good.

Localized Hartree-Fock calculations (dscf program) are parallelized using OpenMP. In this case an almost ideal speedup is obtained because the most expensive part of the calculation is the evaluation of the Fock matrix and of the Slater-potential, and both of them are well parallelized. The calculation of the correction-term of the grid will use a single thread.

Restrictions:

- In the ricc2 program the parts related to RI-MP2-F12, LT-SOS-RI-MP2 or calculation of expectation values for \hat{S}^{2} to not (yet) use OpenMP parallelization. If the OpenMP parallelization is switched on (by setting OMP_NUM_THREADS) these parts will still be executed sequentially.
- In the dscf program the DFT part will only be executed sequentially by a single thread and the \$incore option will be ignored if more than one thread is used. Semi-direct dscf calculations (i.e. if a size larger than 0 is given twoelectron integral scratch file in \$scfintunit) can not be combined with the OpenMP parallel runs. (The program will than stop with error message in the first Fock matrix construction.)

Multi-thread parallelization of aoforce, escf and egrad

The parallelization of those modules is described in [18] and is based on fork() and Unix sockets. Except setting PARNODES which triggers the environment variable SMPCPUS, nothing has to be set in addition. Alternatively, the binaries can be called with -smpcpus <N> command line option or with the keyword \$smp_cpus in the control file.

Global Arrays parallelization of ridft and rdgrad

ridft and rdgrad are parallelized with MPI using the Global Arrays toolkit.
Those versions are automatically used when setting PARA_ARCH=SMP but can also turned on with PARA_ARCH $=G A$ on clusters. Due to the explicit usage of shared memory on an SMP system, user has to be allowed to use sufficient shared memory:

- In addition to the usual stack size limit problem, make sure that your maximum shared memory you are allowed to use on your system is large enough (a few GB or 70-90 percent of the total memory should be sufficient):
- cat /proc/sys/kernel/shmmax shows the amount of allowed shared memory
- use sysctl to set new values, but you have to be root to do that!
- the default shared memory that is used is per process for the matrices is 300 MB for heap and 10 MB for stack. For large cases this can be too small and an error will be given in the output. In order to increase the default values, just set:

\$paroptions

ga_memperproc <stacksize> <heapsize>
stacksize and heapsize have to be given in word, i.e. units of 8 Byte (1 MB is equivalent to 131072 word).

Chapter 4

Preparing your input file with Define

define is the general interactive input generator of TURBOMOLE. During a session with define, you will create the control file which controls the actions of all other TURBOMOLE programs. During your define session you will be guided through four main menus:

1. The geometry main menu: This first menu allows you to build your molecule, define internal coordinates for geometry optimizations, determine the point group symmetry of the molecule, adjust internal coordinates to the desired values and related operations. Beyond this one can perform a geometry optimization at a force field level to preoptimize the geometry and calculate a Cartesian analytical Hessian. After leaving this menu, your molecule to be calculated should be fully specified.
2. The atomic attributes menu: Here you will have to assign basis sets and/or effective core potentials to all atoms. The SV(P) basis is assigned automatically as default, as well as ECPs (small core) beyond Kr.
3. The occupation numbers and start vectors menu: In this menu you should choose eht to start from Extended Hückel MO vectors. Then you have to define the number of occupied orbitals in each irreducible representation.
4. The general menu: The last menu manages a lot of control parameters for all TURBOMOLE programs.

Most of the menu commands are self-explanatory and will only be discussed briefly. Typing * (or q) terminates the current menu, writes data to control and leads to the next while typing \& goes back to the previous menu.

4.0.3 Universally Available Display Commands in Define

There are some commands which may be used at (almost) every stage of your define session. If you build up a complicated molecular geometry, you will find the dis command useful. It will bring you to the following little submenu:

```
ANY COMMAND WHICH STARTS WITH THE 3 LETTERS dis IS A
DISPLAY COMMAND. AVAILABLE DISPLAY COMMANDS ARE :
disc <range> : DISPLAY CARTESIAN COORDINATES
dist <real> : DISPLAY DISTANCE LIST
disb <range> : DISPLAY BONDING INFORMATION
disa <range> : DISPLAY BOND ANGLE INFORMATION
disi <range> : DISPLAY VALUES OF INTERNAL COORDINATES
disg <range> : GRAPHICAL DISPLAY OF MOL. GEOMETRY
<range> IS A SET OF ATOMS REFERENCED
<real> IS AN OPTIONAL DISTANCE THRESHOLD (DEFAULT=5.0)
AS AN EXAMPLE CONSIDER disc 1,3-6,10,11 WHICH DISPLAYS
THE CARTESIAN COORDINATES OF ATOMS 1,3,4,5,6,10,and 11.
HIT >return< TO CONTINUE OR ENTER ANY DISPLAY COMMAND
```

Of course, you may enter each of these display commands directly without entering the general command dis before. The option disg needs special adaption to the computational environment, however, and will normally not be available.

4.0.4 Specifying Atomic Sets

For many commands in define you will have to specify a set of atoms on which that command shall act. There are three ways to do that:

- You may enter all or none, the meaning of which should be clear (entering none makes not much sense in most cases, however).
- You may specify a list of atomic indices like 1 or $3,5,6$ or $2,4-6,7,8-10$ or similar.
- You may also enter atomic identifiers which means strings of at most eight characters: the first two contain the element symbol and the remaining six could be used to distinguish different atoms of the same type. For example, if you have several carbon atoms in your molecule, you could label some c ring and others c chain to distinguish them. Whenever you want to enter an atomic identifier, you have to put it in double quotation marks: "c ring".

You should take into account that define also creates, from the atoms you entered, all others according to symmetry. If necessary, you will therefore have to lower the (formal) symmetry before executing a command.

4.0.5 control as Input and Output File

define may be used to update an existing control file, which is helpful if only the basis set has been changed. In this case just keep all data, i.e. reply with <enter> on
all questions, and only specify new start MOs. The more general usage is described now.
At the beginning of each define session, you will be asked to enter the name of the file to be created. As mentioned earlier, all TURBOMOLE programs require their input to be on a file named control, but it may be useful at this moment to choose another name for this file (e.g. if you have an old input file control and you do not want to overwrite it). Next you will be asked to enter the name of an old file which you want to use as input for this session. This prevents you from creating the new input from scratch if you want to make only minor changes to an old control file. It is possible to use the same file as input and output file during a define session (which means that it will only be modified). This may lead to difficulties, however, because define reads from the input file when entering each main menu and writes the corresponding data when leaving this menu. Therefore the input file may be in an ill-defined status for the next main menu (this will be the case, for example, if you add or change atoms in the first menu so that the basis set information is wrong in the second menu). define takes care of most-but not all-of these problems.

For these reasons, it is recommended to use a different filename for the input and the output file of the define session if you change the molecule to be investigated. In most cases involving only changes in the last three of the four main menus no problem should arise when using the same file as input and output.

4.0.6 Be Prepared

Atomic Coordinates

Molecules and their structures are specified by coordinates of its atoms, within the program invariably by Cartesian coordinates in atomic units (Ångstrøm would also do). In TURBOMOLE these coordinates are contained in the file coord (see Section 16 "Sample control files" for an example).

Recommendation

We strongly recommend to create the coord file before calling define, only for small molecules one should use the interactive input feature of define. Set up the molecule by any program you like and write out coordinates in the xyz-format (XMol format), which is supported by most programs. Then use the TURBOMOLE tool $x 2 \mathrm{t}$ to convert it into a TURBOMOLE coord file (see Section 1.5 .

Internal Coordinates

Structure optimizations, see jobex, are most efficient if carried out in internal coordinates and TURBOMOLE offers the following choices.
internals based on bond distances and angles, see Section 4.1.2.

redundant internals

defined as linearly independent combinations of internals (see ref. [19]), provided automatically by the command ired in the 'geometry main menu' in Section 4.1below. This works in almost all cases and is efficient. The disadvantage is, that this is a black box procedure, the coordinates employed have no direct meaning and cannot be modified easily by the user.
cartesians
should always work but are inefficient (more cycles needed for convergence). Cartesians are the last resort if other options fail, they are assigned as default if one leaves the main geometry menu and no other internals have been defined.

4.1 The Geometry Main Menu

After some preliminaries providing the title etc. you reach the geometry main menu:

```
SPECIFICATION OF MOLECULAR GEOMETRY ( #ATOMS=0 SYMMETRY=c1 )
YOU MAY USE ONE OF THE FOLLOWING COMMANDS :
sy <group> <eps> : DEFINE MOLECULAR SYMMETRY (default for eps=3d-1)
desy <eps> : DETERMINE MOLECULAR SYMMETRY AND ADJUST
        COORDINATES (default for eps=1d-6)
susy : ADJUST COORDINATES FOR SUBGROUPS
ai : ADD ATOMIC COORDINATES INTERACTIVELY
a <file> : ADD ATOMIC COORDINATES FROM FILE <file>
aa <file> : ADD ATOMIC COORDINATES IN ANGSTROEM UNITS FROM FILE <file>
sub : SUBSTITUTE AN ATOM BY A GROUP OF ATOMS
i : INTERNAL COORDINATE MENU
ired : REDUNDANT INTERNAL COORDINATES
red_info : DISPLAY REDUNDANT INTERNAL COORDINATES
ff : UFF-FORCEFIELD CALCULATION
m : MANIPULATE GEOMETRY
frag : DEFINE FRAGMENTS FOR BSSE CALCULATION
w <file> : WRITE MOLECULAR COORDINATES TO FILE <file>
r <file> : RELOAD ATOMIC AND INTERNAL COORDINATES FROM FILE <file>
name : CHANGE ATOMIC IDENTIFIERS
del : DELETE ATOMS
dis : DISPLAY MOLECULAR GEOMETRY
banal : CARRY OUT BOND ANALYSIS
* : TERMINATE MOLECULAR GEOMETRY SPECIFICATION
    AND WRITE GEOMETRY DATA TO CONTROL FILE
```

IF YOU APPEND A QUESTION MARK TO ANY COMMAND AN EXPLANATION
OF THAT COMMAND MAY BE GIVEN

This menu allows you to build your molecule by defining the Cartesian coordinates interactively (ai) or by reading the coordinates from an external file (a, aa). The
structure can be manipulated by the commands sub, m, name and del. The command sy allows you to define the molecular symmetry while desy tries to determine automatically the symmetry group of a given molecule.

There exists a structure library which contains the Cartesian coordinates of selected molecules, e.g. CH_{4}. These data can be obtained by typing for example a ! ch4 or a ! methane. The data files are to be found in the directory \$TURBODIR/structures. The library can be extended.
You can perform a geometry optimization at a force field level to preoptimize the geometry. For this purpose the Universal Force Field (UFF) developed from Rappé et al. in 1992 [7] has been implemented in the uff module (see also Section 5.4). This can also be used to calculate an analytical approximate cartesian Hessian. If one does so, the start Hessian for the ab initio geometry optimization is this Hessian instead of the diagonal one (\$forceinit on carthess for relax module).

Recommendation

Here is an easy way to get internal coordinates, which should work.
Have coord ready before calling define. In the main geometry menu proceed as follows to define redundant internals:

```
a coord read coord
desy determine symmetry, if you expect a higher symmetry, repeat with in-
    creased tolerance desy 0.1, you may go up to desy 1..
ired get redundant internals
* quit main geometry menu
To define internals:
``` in the head line you are done. Otherwise this did not work.
<enter> go back to main geometry menu
* quit main geometry menu
```

```
a coord read coord
```

a coord read coord
desy determine symmetry
desy determine symmetry
i go to internal coordinate menu
i go to internal coordinate menu
iaut automatic assignment of bends etc.
iaut automatic assignment of bends etc.
q to quit bond analysis
q to quit bond analysis
imet to get the metric, unnecessary internals are marked d now. If \#ideg = \#k

```
imet to get the metric, unnecessary internals are marked d now. If #ideg = #k
```

To define cartesians:

```
a coord read coord
desy determine symmetry
* quit main geometry menu
```


### 4.1.1 Description of commands

## Main Geometry Menu

In the headline of this menu you can see the current number of atoms and molecular symmetry (we use an input for $\mathrm{PH}_{3}$ as example). The commands in this menu will now be described briefly:
sy Definition of the Schönflies symbol of the molecular point group symmetry. If you enter only sy, define will ask you to enter the symbol, but you may also directly enter sy c3v. define will symmetrize the geometry according to the new Schönflies symbol and will create new nuclei if necessary. You therefore have to take care that you enter the correct symbol and that your molecule is properly oriented. All TURBOMOLE programs require the molecule to be in a standard orientation depending on its point group. For the groups $C_{n}, C_{n v}, C_{n h}, D_{n}$, $D_{n h}$ and $D_{n d}$ the z-axis has to be the main rotational axis, secondary (twofold) rotational axis is always the x-axis, $\sigma_{v}$ is always the xz-plane and $\sigma_{h}$ the xy-plane. $O_{h}$ is oriented as $D_{4 h}$. For $T_{d}$, the threefold rotational axis points in direction $(1,1,1)$ and the z -axis is one of the twofold axes bisecting one vertex of the tetrahedron.
desy desy allows you to determine the molecular symmetry automatically. The geometry does not need to be perfectly symmetric for this command to work. If there are small deviations from some point group symmetry (as they occur in experimentally determined structures), desy will recognize the higher symmetry and symmetrize the molecule properly. If symmetry is lower than expected, use a larger threshold: <eps> up to 1.0 is possible.
susy susy leads you through the complete subgroup structure if you want to lower symmetry, e.g. to investigate Jahn-Teller distortions. The molecule is automatically reoriented if necessary.
Example: $T_{d} \rightarrow D_{2 d} \rightarrow C_{2 v} \rightarrow C_{s}$.
ai
You may enter Cartesian atomic coordinates and atomic symbols interactively. After entering an atomic symbol, you will be asked for Cartesian coordinates for this type of atom until you enter *. If you enter \& , the atom counter will be decremented and you may re-define the last atom (but you surely won't make mistakes, will you?). After entering *, define asks for the next atom type. Entering \& here will allow you to re-define the last atom type and $*$ to leave this mode and return to
the geometry main menu. Enter q as atom symbol if you want to use a dummy center without nuclear charge. Symmetry equivalent atoms are created immediately after you entered a set of coordinates.

This is a convenient tool to provide e.g. rings: exploit symmetry group $D_{n h}$ to create an n-membered planar ring by putting an atom on the x -axis.
a file You may also read atomic coordinates (and possibly internal coordinates) from file, where file must have the same format as the data group \$coord in file control.

The Cartesian coordinates and the definitions of the internal coordinates are read in free format; you only have to care for the keywords \$coord and (optionally) \$intdef and (important!) for the \$end at the end of the file. The atomic symbol follows the Cartesian coordinates separated by (at least) one blank. For a description of the internal coordinate definitions refer to 4.1.2.
Entering '!' as first character of file will tell def ine to take file from the structure library. (The name following the '!' actually does not need to be a filename in this case but rather a search string referenced in the structure library contents file, see Section 4.1).
aa file same as a, but assumes the atomic coordinates to be in $\AA$ rather than a.u.
sub This command allows you to replace one atom in your molecule by another molecule. For example, if you have methane and you want to create ethane, you could just substitute one hydrogen atom by another methane molecule. The only requirement to be met by the substituted atom is that it must have exactly one bond partner. The substituting molecule must have an atom at the substituting site; in the example above it would not be appropriate to use $\mathrm{CH}_{3}$ instead of $\mathrm{CH}_{4}$ for substitution. Upon substitution, two atoms will be deleted and the two ones forming the new bond will be put to a standard distance. define will then ask you to specify a dihedral angle between the old and the new unit. It is also possible to use a part of your molecule as substituting unit, e.g. if you have some methyl groups in your molecule, you can create further ones by substitution. Some attention is required for the specification of this substituting unit, because you have to specify the atom which will be deleted upon bond formation, too. If you enter the filename from which the structure is to be read starting with '!', the file will be taken from the structure library (see Section 4.1). Definitions of internal coordinates will be adjusted after substitution, but no new internal coordinates are created.

This command offers a submenu which contains everything related to internal coordinates. It is further described in Section 4.1.2,
m This command offers a submenu which allows you to manipulate the molecular geometry, i.e. to move and rotate the molecule or parts of it. It is further described in Section 4.1.3,
frag Here, the fragments will be defined as being used by the jobbsse script in order to do a calculation osing the counter-poise correction scheme. In this menu, up to three monomers can be defined, together with their charges and their symmetry. When assigning atom numbers to fragments, if x is entered instead of a number, the program will request the first and last atoms of a range. This will be useful for very large fragments.
w file The command w writes your molecular geometry and your internal coordinates to file. Afterwards you will be back in the geometry main menu. If the filename entered starts with '!', the structure will be written to the structure library.
name name allows you to change atomic identifiers turning, e.g. oxygen atoms into sulfur atoms. After entering the identifier to be changed (remember the double quotation marks : "c ring"), you will be asked to enter the new one. You can use question marks for characters not to be changed, e.g. you enter "??ring" to change c chain to c ring. If you do not enter eight characters, your input will be filled up with trailing blanks.
del The command del allows you to delete one or more atoms. After you entered the atomic list, define will show you a list of all atoms concerned and will ask you to confirm deleting these atoms. If any internal coordinate definitions exist, which rely on some of the deleted atoms, these definitions will be deleted, too.
banal The command banal allows you to perform a bonding analysis, that is, define will try to decide which atoms are bonded and which are not (according to a table of standard bond lengths which is included in the code of define). You must have performed this command before you can use the display commands disb (display bonding information) or disa (display bond angle information). The standard bond lengths (and the bonding analysis available from these) are also needed for the commands sub and iaut (see internal coordinate menu, Section 4.1.2). If you want to change the standard bond lengths (or define more bond lengths, because not for all possible combinations of elements a standard length is available) you can do that by creating your own file with the non-default values and by specifying its full pathname in file .sys.data. The file has the following simple format:
c - h 2.2
h - h 2.0
. - . . .

The format of the entries is almost arbitrary: the two element symbols have to be separated by a bar, the new bond distance follows in free format (in atomic units). If the file cannot be read properly, a warning message is displayed.

* This command leaves this first main menu and writes all data generated so far to file. The default output file is the file you choose in the first question during your define session (usually control). Now the data groups $\$$ coord and $\$$ intdef will be written to file. After leaving this menu, you will enter the atomic attributes menu, which is described in Section 4.2.


### 4.1.2 Internal Coordinate Menu

```
INTERNAL COORDINATE MENU (#ideg=6 #k=2 #f=0 #d=0 #i=0)
imet <a> : PROVIDE B-MATRIX FOR ACTIVE INTERNAL COORDINATES
 (CHECK COMPLETENESS AND NUMERICAL QUALITY
 AND CHANGE REDUNDANT INTERNALS TO display)
idef : SUB-MENU FOR INTERACTIVE DEFINITION OF INTERNAL COORDINATES
ideg <a> : OUTPUT NUMBER OF TOT. SYMMETRIC INTERNAL DEGREES OF FREEDOM
iaut : TRY AUTOMATIC DEFINITION OF INTERNAL COORDINATES
iman <a> : MANIPULATE GEOMETRY BY CHANGING INTERNAL COORDINATE VALUES
imanat <i>: AS iman BUT STARTING AT INTERNAL COORD. NUMBER i
ic <i> <x>: CHANGE STATUS OF INTERNAL COORDINATE <i> TO <x>
 e.g. ic 5 d TO MAKE 5TH COORD. display OR ic k d
irem <i> : REMOVE INTERNAL COORDINATE <i>,
 e.g. irem d TO REMOVE ALL display COORDS
dis : ANY DISPLAY COMMAND e.g. disi OR disc
disiat <i>: AS disi BUT STARTING AT INTERNAL COORD. NUMBER i
WHERE <a>= OPTIONAL ATOMIC SET (DEFAULT=all)
 <i>= INDEX(LIST) OF INTERNAL COORDINATE(S) LIKE 3-6,8 OR <i>=<x>
 <x>= STATUS OF INTERNAL COORDINATE = k, f, d OR i
ADDING A QUESTION MARK TO ANY COMMAND MAY PROVIDE EXPLANATIONS
ENTER COMMAND OR HIT >return< TO GET BACK TO GEOMETRY MAIN MENU
```

The parameters in the headline of this menu have the following meanings:
\#ideg is the total number of symmetry restricted degrees of freedom.
\#k is the number of active internal coordinates specified up to now. Only these coordinates are optimized during a geometry optimization.
\#f is the number of fixed internal coordinates specified. These coordinates will be included in the B-matrix (see command imet), but their values will not be changed during geometry optimization.
\#d is the number of internal coordinates whose values will only be displayed (e.g. by command disi), but no gradients will be calculated for these coordinates nor will they be included in the geometry optimization.
\#i means the number of coordinates which are defined, but will be completely ignored, i.e. they are not even displayed on the screen and will not be used by any program (this is the waste-paper-basket of define).

Note that the \#k plus \#f must equal the number of degrees of freedom (\#ideg) of your molecule, if you want to perform a geometry optimization. If you have less coordinates than degrees of freedom, you will have to specify further ones (commands idef or iaut, see below); if you have more coordinates than degrees of freedom, you will have to throw away some of them (commands irem or imet, see below).

The commands in this menu allow you to define internal coordinates for your molecule, adjust your geometry to special values of these internal coordinates and to control the numeric reliability of the chosen set of internal coordinates. In detail, the commands act as follows.

## Description of commands

imet $a \quad$ This command computes the so-called B-matrix, which is the matrix of the derivatives of the (active and fixed) internal coordinates with respect to Cartesian coordinates. This matrix is used in program relax for the conversion from Cartesian coordinates and gradients to internal ones and vice versa. If this matrix is singular (or even nearly singular) this indicates a linear dependency of your internal coordinate set. As a consequence the geometry update (more exactly the transformation of the updated internal coordinates into Cartesian ones) will fail. This may also happen in the course of a geometry optimization if the coordinates run into linear dependency during their optimization. imet checks the B-matrix and removes linear dependent internal coordinates from your list (their status is changed from $\# k$ or $\# f$ to $\# d$ ). If $\mathbf{B}$ is only near singular, a warning is issued and the lowest eigenvalue(s) as well as the corresponding eigenvector(s) are displayed. In this case, you should try to find better internal coordinates (although this may not always be possible). After the command imet, there may be too few (active plus fixed) internal coordinates, but certainly not too many (because linear dependencies have been eliminated). Perhaps you will have to add new ones or-better!-try command iaut or ired in the preceding menu.
Command imet should be used always after creating internal coordinates with iaut or idef (especially after iaut, because this command creates usually an overcomplete set of internal coordinates).
idef idef unfolds a little submenu where you can define internal coordinates manually. The exact procedure of the definition will be described below in a separate section.
ideg $a \quad$ This command gives you the number of symmetry restricted degrees of freedom (for the atomic set specified by $a$ ). Without symmetry, this is just $3 N-6$, where $N$ is the number of atoms, but if there is symmetry, some of these degrees of freedom will violate symmetry and therefore are not valid. For geometry optimizations, only the symmetry allowed degrees of freedom are needed, because the symmetry requirements are imposed anyway. In connection with the optional atomic set $a$ this command can help you to find out, in which part of a complicated molecule internal coordinates are missing, if you fail to get the full number of \#ideg (which equals the result of ideg all) for the molecule as a whole.
iaut iaut tries an automatic definition of internal coordinates. This command relies on an recursive procedure which tries to simplify the molecule as far as possible and then starts the definition of internal coordinates. At present not all molecular topologies are supported, therefore it may happen that no internal coordinates can be assigned to your molecule or at least a part of it. However, for all cases in which an automatic assignment of coordinates is possible, iaut has up to now proved to provide very good internal coordinates. If iaut works for your molecule (and in most non-pathological cases it will) we recommend strongly to use these coordinates, as they may help you to save several cycles in the geometry optimization procedure. After creating internal coordinates with iaut you should always use imet (see above), because iaut may provide an overcomplete set of coordinates. All coordinates which conflict with the molecular symmetry are set to ignore by iaut.
iman $a$ iman allows you to modify the values of internal coordinates. If you specify a list of atoms $a$ only those internal coordinates which refer to only these atoms will be handled. You will get a list of all (active and fixed) internal coordinates and their current values and you will be able to enter a new value for each of them if you like. Default (<enter>) keeps the value shown. Be aware that all distances are given in atomic units ( 1 a.u. $=52.9 \mathrm{pm}$ ).
ic $i x \quad$ This option allows you to change the status of a coordinate, e.g. from active to display or every other combination. The syntax is ic 5 d , if coordinate no. 5 is to be set to display, or ic k d, if all active coordinates are to be set to display.
irem $i \quad$ This option allows you to delete definitions of internal coordinates from your list. The indices of the internal coordinates always refer to the full list of coordinates including display and ignore coordinates. To make sure you delete the right ones, use disi. Also the indices will immediately change if you delete coordinates. If you want to delete several coordinates, this is therefore done most easily if you delete them in order of descending indices (because deletion of a coordinate has only an effect on the coordinates with higher indices). After choosing the coordinates
to be deleted, a list of all coordinates involved will be displayed and you will be asked to confirm deletion.

The syntax is simply irem 5 to delete internal coordinate no. 5 or irem d to remove all 'display' coordinates.

Hitting <return> will bring you back to the geometry main menu.

## Interactive Definition of Internal Coordinates

If you choose idef in the internal coordinate menu, you will get the following information:

```
ENTER INTERNAL COORDINATE DEFINITION COMMAND
 <x> <type> <indices>
WHERE <x> = k f d i
 <type> = stre invr bend outp tors linc linp
 comp ring pyrm bipy pris cube octa
THESE COMMANDS WILL BE EXPLAINED IN DETAIL IF YOU ENTER
<x> <type>? FOR SOME CHOICE OF <x> AND <type>, E.G. k stre ?
DEFAULT=GO BACK TO INTERNAL MAIN MENU DISPLAY=dis
```

The < $\mathrm{x}>$ means the status (see page 51) of the internal coordinate entered ( $k, f, d$, i). The syntax is:

```
k stre 1 2
d tors 3 6 2 7
f bend 3 4 5
i outp 3 479
```

Note that in the third example atom 5 is the central atom of the angle!

## Specification of available internal coordinates

The following types of coordinates are available:
stre The stre (for stretch) describes a distance between two atoms. It needs only two atomic indices to be given, the order of which is arbitrary.
invr The invr coordinate (for inverse $\mathbf{r}$ ) describes an inverse distance. The declaration is the same as for stre, but in some cases (if you are far away from the minimum) the use of invr may result in better convergence.
bend bend describes a bond angle. It requires three atoms to be specified, of which the third one is the atom at the apex.
outp $\quad$ Out-of-plane angle: outp $a b c d$ is the angle between bond $a-d$ and plane $b-c-d$.
tors Dihedral angle: tors $a b c d$ is the angle between the planes $a-b-c$ and $b-c-d$.
linc This is a special coordinate type to describe the bending of a near-linear system. linc $a b c d$ describes the collinear bending of $a-b-c$ (where the angle is defined as for bend: the apex atom appears last) in the plane of $b-c-d$ (see also below, command linp). The system $b-c-d$ has to be non-linear, of course.
linp This coordinate is similar to linc, but describes the bending of $a-b-c$ perpendicular to the plane $b-c-d$. These two types of coordinates are in most cases sufficient to describe the bending of near-linear systems. An example may help you to understand these two coordinate types. Consider ketene, $\mathrm{H}_{2} \mathrm{CCO}$, which contains a linear system of three atoms. Without symmetry, this molecule has 9 degrees of freedom. You could choose the four bond lengths, two CCH angles and the out-of-plane angle of the $\mathrm{C}-\mathrm{C}$ bond out of the $\mathrm{CHH}-$ plane. But then two degrees of freedom still remain, which cannot be specified using these normal coordinate types. You can fix these by using linc and linp. The two coordinates linc 1324 and linp 1324 (where 1=oxygen, $2=$ carbon, $3=$ carbon, $4=$ hydrogen) would solve the problem.
comp The type comp describes a compound coordinate, i.e. a linear combination of (primitive) internal coordinates. This is often used to prevent strong coupling between (primitive) internal coordinates and to achieve better convergence of the geometry optimization. The use of linear combinations rather than primitive coordinates is especially recommended for rings and cages (see ref. [20]). Command iaut uses linear combinations in most cases.

After you entered k comp $n$ where $n$ is the number of primitive internal coordinates to be combined, you will be asked to enter the type of the coordinate (stre, bend, ...). Then you will have to enter the weight (the coefficient of this primitive coordinate in the linear combination) and the atomic indices which define each coordinate. The definition of the primitive coordinates is the same as described above for the corresponding coordinate types. It is not possible to combine internal coordinates of different types.
ring This type helps you to define special ring coordinates. You only have to enter k ring $n$ where n is the ring size. Then you will be asked for the atomic indices of all atoms which constitute the ring and which must be entered in the same order as they appear in the ring. The maximum number of atoms in the ring is 69 (but in most cases the ring size will be limited by the maximum number of atoms which is allowed for define).

Hitting <return> will bring you back to the internal coordinate menu where you can see the new number of internal coordinates in the headline.

### 4.1.3 Manipulating the Geometry

Note that the molecular geometry can be modified with the iman command of the internal coordinate menu described earlier, if internal coordinates has been defined. Another option is to select $m$ in the geometry main menu which provides the following submenu:

```
CARTESIAN COORDINATE MANIPULATION MENU :
move : TRANSLATE AND/OR ROTATE PART OF THE MOLECULE
inert : MOVE MOLECULE SO THAT COORDINATE AXES BECOME
 PRINCIPAL AXES OF INERTIA
mback : RESTORE PREVIOUS MOLECULAR GEOMETRY
dis : DISPLAY MOLECULAR GEOMETRY
YOU MAY APPEND A QUESTION MARK TO ANY OF THESE COMMANDS
FOR FURTHER EXPLANATIONS.
HIT >return< OR USE ANY GEOMETRY COMMAND NOT IN THIS LIST
TO TERMINATE THIS MENU.
UPON TERMINATION THE MOLECULAR SYMMETRY WILL BE ENFORCED
ACCORDING TO SYMMETRY GROUP c3v .
```

The meaning of the commands inert and mback should be clear; command move allows you to manipulate the geometry of your molecule. After entering move, you will be asked to specify a set of atoms on which the command shall act. You can use this to manipulate only a part of your molecule, e.g. if you are building a structure from subunits and you want to adjust their relative arrangement. As long as you stay in this menu, the molecular symmetry needs not be correct (so that you can try different movements and/or rotations), but as soon as you leave it, the geometry will be symmetrized according to the present Schönflies symbol. After you specified the atomic set to be considered, you get the following information:

```
INPUT DIRECTION OF MOVEMENT OR LOCATION OF ROTATION AXIS
EITHER AS A COORDINATE TRIPLE SEPARATED BY BLANKS,
OR AS TWO ATOMIC INDICES SEPARATED BY KOMMA, OR x OR y OR z
OR ENTER ANY DISPLAY COMMAND FIRST OR & TO GO BACK
```

You can thus specify the direction of movement (or the rotational axis) in the form 0 . 0. 1. or simply $z$ (which both describes the z -axis) or $1.3256-3.3330 .2218$ for an arbitrary axis. If you want to specify an axis which is related to your molecule, you may also enter two atomic indices which define it. After having specified the axis, you have to enter the distance of movement and the angle of rotation. If you want to perform a simple rotation, enter 0 for the distance of movement and if you want to simply move your structure, enter 0 for the rotational angle.
You can leave this menu and return to the geometry main menu by hitting <return> or by entering any command of the geometry main menu.

### 4.2 The Atomic Attributes Menu

After you specified the molecular geometry and symmetry and wrote this data to file, you will encounter the atomic attributes menu, which is the second of the four
main menus. You will enter this menu, if all necessary data cannot be read from your input file or if you do not use an input file. This menu deals with the specification of basis sets and other data related to the atom type:

```
ATOMIC ATTRIBUTE DEFINITION MENU (#atoms=5 #bas=5 #ecp=0)
b : ASSIGN ATOMIC BASIS SETS
bb : b RESTRICTED TO BASIS SET LIBRARY
bl : LIST ATOMIC BASIS SETS ASSIGNED
bm : MODIFY DEFINITION OF ATOMIC BASIS SET
bp : SWITCH BETWEEN 5d/7f AND 6d/10f
lib : SELECT BASIS SET LIBRARY
ecp : ASSIGN EFFECTIVE CORE POTENTIALS
ecpb : ecp RESTRICTED TO BASIS SET LIBRARY
ecpi : GENERAL INFORMATION ABOUT EFFECTIVE CORE POTENTIALS
ecpl : LIST EFFECTIVE CORE POTENTIALS ASSIGNED
ecprm: REMOVE EFFECTIVE CORE POTENTIAL(S)
c : ASSIGN NUCLEAR CHARGES (IF DIFFERENT FROM DEFAULTS)
cem : ASSIGN NUCLEAR CHARGES FOR EMBEDDING
m : ASSIGN ATOMIC MASSES (IF DIFFERENT FROM DEFAULTS)
dis : DISPLAY MOLECULAR GEOMETRY
dat : DISPLAY ATOMIC ATTRIBUTES YET ESTABLISHED
h : EXPLANATION OF ATTRIBUTE DEFINITION SYNTAX
* : TERMINATE THIS SECTION AND WRITE DATA OR DATA REFERENCES TO control
GOBACK=& (TO GEOMETRY MENU !)
```

The headline gives you the number of atoms, the number of atoms to which basis sets have already been assigned and the number of atoms to which effective core potentials have already been assigned. Most of the commands in this menu deal with the specification of basis sets and pseudopotentials.

## Basis sets available

The following basis sets are available on \$TURBODIR/basen/, which you may inspect to see which other basis sets are supported automatically. The corresponding publications can be found here 1.3 .
$\operatorname{SV}(P)$ or def-SV(P) for routine SCF or DFT. Quality is about 6-31G*.
TZVP or def-TZVP for accurate SCF or DFT. Quality is slightly better than 6-311G**.

TZVPP or def-TZVPP for MP2 or close to basis set limit SCF or DFT. Comparable to $6-311 \mathrm{G}(2 \mathrm{df})$.

QZVP and QZVPP for highly correlated treatments; quadruple zeta +3 d 2 f 1 g or 4 d 2 f 1 g (beyond Ne), 3p2d1f for H.

These basis sets are available for atoms $\mathrm{H}-\mathrm{Kr}$, and the split-valence (SV) and valence-triple- $\zeta$ (TZV) basis sets types with ECPs also for $\mathrm{Rb}-\mathrm{Rn}$, except lanthanides.

For calculations with the programs rimp2 and ricc2 optimized auxiliary basis sets are available for the basis sets SV(P), SVP, TZVP, TZVPP, and QZVPP.

NEW: New sets of basis functions, partly identical with those mention above, denoted def2-XYZ are available for atoms H-Rn [6]. The def2 basis sets for 5p and 6p block elements are designed for small core ECPs (ECP-28, ECP-46 and ECP-60). For each family, SV, TZV, and QZV, we offer two sets of polarisation functions leading to:
def2-SV(P) and def2-SVP
def2-TZVP and def2-TZVPP
def2-QZVP and def2-QZVPP
We strongly recommended the new def2-basis, since they have been shown to provide consistent accuracy across the periodic table.

## Recommendation

Use the same basis set type for all atoms; use ECPs beyond Kr since this accounts for scalar relativistic effects.

New basis sets (def2-XYZ): MP2 implies RI-MP2 and RICC2
exploratory MP2: SVP
almost quantitative DFT: SV(P), HF: SVP, MP2: TZVPP; properties (HF and DFT): TZVPP
quantitative DFT: TZVP, HF: TZVPP, MP2: QZVPP
basis set limit DFT: QZVP, HF: QZVP
If you want a better basis than $\operatorname{SV}(\mathrm{P})$, assigned automatically, use b all def2-TZVP (or another basis). The assignment can be checked by bl.
Diffuse functions should only be added if really necessary. E.g. for small anions or treatment of excited states use: TZVP instead of SVP + diffuse. This is more accurate and usually faster. Only for excited states of small molecules or excited states with (a partial) Rydberg character add additional diffuse functions (e.g. by using the aug-cc-pVTZ basis) as well as the keyword diffuse, for more information, see page 229 in the keyword section.
[Old basis sets (def-XYZ): For standard correlated calculations (MP2, RI-MP2, RI-CC2) use the doubly-polarized TZVPP (or def-TZVPP) basis.]

## Correlation-Consistent (Dunning) Basis Sets

Dunning basis sets like cc-pVDZ, cc-pVTZ, cc-pVQZ are also supported, e.g. by b all cc-pVTZ. But these basis sets employ generalized contractions for which

TURBOMOLE is not optimized. This has in particular strong effects on the performance of all programs which use 4-index electron repulsion integrals, for RI-MP2 and RI-CC2 this is partially compensated by the RI-approximation.

The following correlation consistent basis sets are available in the TURBOMOLE basis set library:
cc-pVXZ standard valence X -tuple zeta basis sets $(\mathrm{X}=\mathrm{D}, \mathrm{T}, \mathrm{Q}, 5,6)$; available for $\mathrm{H}, \mathrm{He}, \mathrm{Li}-\mathrm{Ne}, \mathrm{Na}-\mathrm{Ar}, \mathrm{K}, \mathrm{Ca}, \mathrm{Ga}-\mathrm{Kr}$.
(cc-pV6Z only for $\mathrm{H}, \mathrm{He}, \mathrm{B}-\mathrm{Ne}, \mathrm{Al}-\mathrm{Ar}$; for Al-Ar also the recommended newer cc-pV(X+d)Z sets are available)
cc-pwCVXZ weighted core-valence X -tuple zeta basis sets $(X=D, T, Q, 5)$; available for $\mathrm{H}, \mathrm{He}, \mathrm{B}-\mathrm{Ne}, \mathrm{Al}-\mathrm{Ar}$.
(for $\mathrm{Al}-\mathrm{Ar}$ also the recommended combination of the cc-pV(X+d)Z sets with the core valence functions (wC), i.e. the cc-pwCV $(\mathrm{X}+\mathrm{d}) \mathrm{Z}$ basis set are available)
aug- diffuse functions for combination with the basis sets cc-pVXZ, cc$\mathrm{pV}(\mathrm{X}+\mathrm{d}) \mathrm{Z}$, cc-pwCVXZ or cc-pV(X+d)Z; available for $\mathrm{H}, \mathrm{He}, \mathrm{B}-\mathrm{Ne}$, $\mathrm{Al}-\mathrm{Ar}$ with $\mathrm{X}=\mathrm{D}-6$ and $\mathrm{Ga}-\mathrm{Kr}$ with $\mathrm{X}=\mathrm{D}-5$.

For calculations with the programs rimp2 and ricc2 optimized auxiliary basis sets are available for the basis set series cc-pVXZ, cc-pV $(X+d) Z$, cc-pwCVXZ, cc-pwCV $(X+d) Z$, aug-cc-pVXZ, aug-cc-pV $(X+d) Z$, aug-cc-pwCVXZ, and aug-ccpwCV $(\mathrm{X}+\mathrm{d}) \mathrm{Z}$ with $\mathrm{X}=\mathrm{D}, \mathrm{T}, \mathrm{Q}, 5$, but not for $\mathrm{X}=6$.

### 4.2.1 Description of the commands

b
With b you can specify basis sets for all atoms in your molecule. After entering b you will be asked to specify the atoms to which you want to assign basis sets. You can do this in the usual ways (refer to Section 4.0.4), including all and none. Then you will be asked to enter the nickname of the basis set to be assigned. There are two principal ways to do this:

1) If you are in the append mode, the nickname you entered will be appended to the atomic symbol of the element under consideration. This is especially useful if you want to assign basis sets to different atoms with one command. For example, if you want to assign basis sets to hydrogen and oxygen atoms and you enter only DZ, the basis sets h DZ and o DZ will be read from the basis set library.
2) If you are in the non-append mode, no atomic symbol will be inserted in front of the nickname entered. Therefore you have to enter the full basis set nickname, e.g. h DZ. This mode is advantageous if you want to assign basis sets to dummy centers (i.e. points without
nuclear charge but with basis functions, e.g. for counterpoise calculations) or if you want to use the basis set nickname none (which means no basis functions at this atom).

You can switch between the two modes with ' + ' (switches to append mode) and ' - ' (switches to non-append mode).
Once you have specified your basis set nickname, define will look in the standard input file (normally control) for this basis set. If it can not be found there, you can switch to the standard basis set library (if you did not use a standard input file, the standard library will be searched immediately). If the basis set cannot be found there, you are asked either to enter a new standard library (which will be standard only until you leave this menu) or another input file, where the basis set can be found. If you do not know the exact nickname of your basis set, you may abbreviate it by '?', so you could enter h DZ? to obtain basis sets like h DZ, h DZP, h DZ special, etc. define will give you a list of all basis sets whose nicknames match your search string and allows you to choose among them. You may also use the command list to obtain a list of all basis sets cataloged.
bb bb does essentially the same as b but does not search your default input file for basis sets. Instead it will look in the basis set library immediately.
bl gives you a list of all basis sets assigned so far.
This command is used to modify basis sets which are already assigned. The corresponding submenu is self-explanatory, but we recommend to change directly the file basis.
$\mathrm{bp} \quad$ The TURBOMOLE programs normally work with basis sets of $5 d$-functions (which means they delete the $s$-component of the full $6 d$-set). bp allows to switch between the proper $5 d / 7 f$-set and the Cartesian $6 d / 10 f$-set.
ecp This command allows you to specify effective core potentials for some atoms. The assignment works exactly like the specification of basis sets (see above).
ecpb This one does the same as command ecp, but restricted to the basis set library (the input file will not be used).
ecpi ecpi gives you some general information about what type of pseudopotentials is supported. For more information we refer to [21] and references therein.
ecpl ecpl gives you a list of all pseudopotentials assigned so far.
ecprm ecprm allows to remove a pseudopotential assignment from the list. This command is useful if you want to perform an all electron calculation after an ECP treatment.
c Command c assigns a special nuclear charge to an atom. This is useful to define dummy centers for counterpoise calculations where you set the nuclear charge to zero.
m This command allows you to assign non-default atomic masses to an atom. Use this if you want to analyze isotopic shifts of calculated harmonic frequencies. The standard masses are those of the natural isotope mix.
dat dat gives you a list of all data already specified.

* This is again the usual command to leave a menu and write all data to file control (or any other output file). It is not possible to leave this menu unless basis sets have been specified for all atoms in your molecule. If you do not want to use a basis set for one or more atoms, use the basis set nickname none. On leaving this menu, the data groups \$atoms and $\$$ basis will be written to the output file.

After you finished this menu, you will enter the third main menu of define which deals with start vectors and occupation numbers.

### 4.3 Generating MO Start Vectors

### 4.3.1 The MO Start Vectors Menu

This menu serves to define the occupation numbers, and to generate the start vectors for HF-SCF and DFT calculations. They may be constructed from earlier SCF calculations (perhaps employing another basis set, type use), by Hamilton core guess (hcore), or by an extended Hückel calculation which can be performed automatically (eht). An occupation of the start orbitals will be proposed and can be modified if desired.

OCCUPATION NUMBER \& MOLECULAR ORBITAL DEFINITION MENU

```
CHOOSE COMMAND
infsao : OUTPUT SAO INFORMATION
atb : Switch for writing MOs in ASCII or binary format
eht : PROVIDE MOS && OCCUPATION NUMBERS FROM EXTENDED HUECKEL GUESS
use <file> : SUPPLY MO INFORMATION USING DATA FROM <file>
man : MANUAL SPECIFICATION OF OCCUPATION NUMBERS
hcore : HAMILTON CORE GUESS FOR MOS
flip : FLIP SPIN OF A SELECTED ATOM
& : MOVE BACK TO THE ATOMIC ATTRIBUTES MENU
THE COMMANDS use OR eht OR * OR q(uit) TERMINATE THIS MENU !!!
FOR EXPLANATIONS APPEND A QUESTION MARK (?) TO ANY COMMAND
```


## Recommendation

You will normally only need to enter eht. For the EHT-guess, define will ask for some specifications, and you should always choose the default, i.e. just <enter>. Of importance is only the molecular charge, specified as 0 (neutral, default), 1 or -1 etc.

Based on the EHT orbital energies define proposes an occupation. If you accept you are done, if not you get the "occupation number assignment menu" explained in 4.3.2.

## Description of Commands

infsao Command infsao provides information about the symmetry adapted basis which is used for the SCF-calculation. To exploit the molecular symmetry as efficiently as possible, TURBOMOLE programs do not use the simple basis which you specified during your define session. Instead it builds linear combinations of equal basis functions on different-but symmetry equivalent-atoms. This basis is then called the SAO-basis (Symmetry Adapted Orbital). It has the useful property that each basis function transformed to this basis transforms belongs to one irreducible representation of the molecular point group (that is, the basis reflects the full molecular symmetry as specified by the Schönflies symbol). infsao gives you a listing of all symmetry adapted basis functions and their constituents either on file or on the screen. This may help you if you want to have a closer look at the SCF vectors, because the vector which is output by program dscf is written in terms of these SAOs.
atb Molecular orbitals can be written either in ASCII or in binary format. This command switches from one option to the other, and it is highly recommended to read which setting is currently active. ASCII format is portable and allows the usage of TURBOMOLEinput files on different systems with incompatible binary format. Binary format is faster and smaller files will be written. The external program atbandbta can be used to transform existing mos, alpha, and beta files from ASCII to binary format and vice versa.
eht eht performs an extended Hückel calculation for your molecule. The orbital energies available from this calculation are then used to provide occupation numbers for your calculation and the Hückel MOs will be projected onto the space that is spanned by your basis set. This startvectors are not as good as the ones which may be obtained by projection of an old SCF vector, but they are still better than the core Hamiltonian guess that is used if no start vectors are available. When using this command, you will be asked if you want to accept the standard Hückel parameters and to enter the molecular charge. Afterwards you will normally get a list of the few highest occupied and lowest unoccu-
pied MOs, their energies and their default occupation. If you don't want to accept the default occupation you will enter the occupation number assignment menu, which is described in Section 4.3.2. Note that the occupation based on the Hückel calculation may be unreliable if the difference of the energies of the HOMO and the LUMO is less than 0.05 a.u. (you will get a warning). You will also have to enter this menu for all open-shell cases other than doublets.
use file With command use you are able to use information about occupied MOs and start vectors from a former calculation on the same molecule. file should be the path and name of the control file of this former calculation, of which all data groups related to occupation numbers and vectors will be read. As the new generated data will overwrite the existing data if both resist in the same directory, it is best and in some cases necessary to have the data of the former calculation in another directory than the one you started the define session in. Then just type use <path>/control to construct a new SCF vector from the data of the old calculation, without changing the old data. The data groups $\$ c l o s e d$ shells and \$open shells will be taken for your new calculation and the SCF vector from the old calculation will be projected onto the space which is spanned by your present basis set. These start vectors are usually better than the ones you could obtain by an extended Hückel calculation.
man man allows you to declare occupation numbers or change a previous declaration manually. After selecting this command, you will get a short information about the current occupation numbers:

actual closed shell orbital selection	range		
a1	\#	1-	18
a2	\#	1-	1
e	\#	1-	13

any further closed-shell orbitals to declare ? DEFAULT(y)
If you answer this question with $y$, you enter the orbital specification menu which will be described in Section 4.3.3.
The same procedure applies to the open-shell occupation numbers after you finished the closed-shell occupations.
hcore hcore tells programs dscf and ridft to run without a start vector (it writes the data group \$scfmo none to file control). dscf or ridft will then start from the core Hamiltonian start vector, which is the vector obtained by diagonalizing the one-electron Hamiltonian. Note that you still have to specify the occupation numbers. This concerns only the
first SCF run, however, as for the following calculations the converged vector of the previous iteration will be taken. A SCF calculation with a core Hamiltonian start vector typically will take $2-3$ iterations more than a calculation with an extended Hückel start vector (a calculation with the converged SCF vector of a previous calculation will need even less iterations, depending on how large the difference in the geometry between the two calculations is).
flip flipping of spins at a selected atom. Requirements: converged UHF molecular orbitals and no symmetry $\left(\mathrm{C}_{1}\right)$. definewill localize the orbitals, assign them to the atoms and give the user the possibility to choose atoms at which alpha-orbitals are moved to beta orbitals, or vice versa. This is useful for spin-broken start orbitals, but not for spatial symmetry breaking.

* This command (as well as use and eht) terminates this menu, but without providing a start vector. If the keyword \$scfmo exists in your input file, it will be kept unchanged (i.e. the old vector will be taken), otherwise \$scfmo none will be inserted into your output file, which forces a calculation without start vector to be performed. When you leave this menu, the data groups $\$$ closed shells, \$open shells (optionally) and $\$ s c f m o$ will be written to file. You will then reach the last of the four main menus (the General Menu) which is described in Section 4.4 .


### 4.3.2 Assignment of Occupation Numbers

If an automatic assignment of occupation numbers is not possible or you do not except the occupation numbers generated by the EHT, you enter the following menu:

```
OCCUPATION NUMBER ASSIGNMENT MENU (#e=60 #c=0 #o=0)
s : CHOOSE UHF SINGLET OCCUPATION
t : CHOOSE UHF TRIPLET OCCUPATION
u <int> : CHOOSE UHF WITH <int> UNPAIRED ELECTRONS
l <list> : PRINT MO'S FROM EHT IN <list>, (DEFAULT=ALL)
p <index> : PRINT MO-COEFFICIENTS OF SHELL <index>
c <list> : CHOOSE SHELLS IN <list> TO BECOME CLOSED SHELLS
o <index> : CHOOSE SHELL <index> TO BECOME AN RHF OPEN SHELL
a <list> : CHOOSE SHELLS IN <list> TO BECOME UHF ALPHA SHELLS
b <list> : CHOOSE SHELLS IN <list> TO BECOME UHF BETA SHELLS
v <list> : CHOOSE SHELLS IN <list> TO BECOME EMPTY SHELLS
& : REPEAT THE EXTENDED HUECKEL CALCULATION
* : SAVE OCCUPATION NUMBERS & GO TO NEXT ITEM
dis : GEOMETRY DISPLAY COMMANDS
e : CALCULATE EHT-ENERGY
f : FURTHER ADVICE
<int> = INTEGER
<index> = INDEX OF MO-SHELL ACCORDING TO COMMAND s
<list> = LIST OF MO-SHELL INDICES (LIKE 1-5,7-8,11)
```


## Recommendation

Enter 1 to get a list of eht MO energies. Then make up your mind on what to do: closed shell, RHF open shell (not allowed for DFT) or UHF. Look at the examples below.

RHF c 1-41,43,45 to define these levels to be doubly occupied.
UHF a 1-5 alpha levels to be occupied, b 1-3,5 beta levels to be occupied. Or simply, s, t, or u 1 to get singlet, triplet or doublet occupation pattern.

ROHF c 1-41,43,45 levels to be doubly occupied; o 42 level 42 should be partially occupied. You will then be asked to specify the occupation. If there are more open shells you have to repeat, since only a single open shell can be specified at a time. Watch the headline of the menu, which tells you the number of electrons assigned to MOs.

## Description of Commands

s list This command gives you a listing of all MOs and their energies as obtained from the extended Hückel calculation. For $\mathrm{NH}_{3}$ in $C_{3 v}$ and TZVP you get, e.g.:

ORBITAL	SYMMETRY	ENERGY	SHELL	CUMULATED	CL.SHL OCC.	OP.SHL OCC.
(SHELL)	TYPE	DEGENERACY			SHELL	DEG.

p index This allows you to get the linear combination of basis functions which form the MO-index. Note that this refers not to the basis set you specified, but to the extended Hückel basis. index must be a single index, not an index list.
c list This command allows you to specify closed shells. Their occupation will be 2 per MO, the total occupation the shell degeneracy which you can obtain by using command s. list is a list of shell indices like 1-13 or $1,3-5,7$.
o index This command allows you to specify open shells. index must be a single shell index, not an index list. You will then be asked for the number of electrons per MO which shall be contained in this shell. For example, for a fluorine atom you should choose $\circ \mathrm{n}$ (where n is the index of the $p$-shell) and an occupation of $5 / 3$ per MO. You may enter the
occupation numbers as simple integers or as integer fractions, e.g. 1 for the $s$-occupation in sodium, $5 / 3$ for the $p$-occupation in fluorine.
v list With this command you can remove an orbital occupation, if you specified a wrong one. list is again a list of shell indices in usual syntax.
\& This command has a different meaning in this menu than in the rest of define. Here it will repeat the extended Hückel calculation (perhaps you want to change some Hückel parameters for the next one).

*     * will not bring you back to the occupation numbers menu, but will terminate the whole occupation number and start vector section and will bring you to the last main menu, which is described in Section 4.4. If you want to leave this menu without assigning all electrons in your molecule to shells, define will issue a warning and suggest to continue defining occupation numbers. You can ignore this warning, if you do not want to assign all electrons.
e Calculates and displays the extended Hückel total energy of your molecule.
f $\quad \mathrm{f}$ will give you some information about the commands in this menu.

You may overwrite occupation numbers once given by just redefining the corresponding shell. For example, if you choose shells 1-10 as closed shells and afterwards shell no. 9 as open shell (with any occupation number), the open shell will be correctly assigned.

### 4.3.3 Orbital Specification Menu

define provides the possibility to assign the occupation numbers of the MOs manually, if you like. To do that, use the command man in the occupation number main menu and you will arrive at the following submenu:

```
------------- ORBITAL SPECIFICATION MENU -----------------
<label> <list> : select orbitals within <list>
-<label> <list> : skip orbitals within <list>
& : ignore input for last label
clear : clear all assignments
p(rint) : print actual orbital selection
for help, type ? or help // for quit, type * or q(uit)
```

Depending on whether you are in the closed- or in the open-shell section, the commands of this menu refer only to the corresponding type of orbitals. The commands of this menu do not need much explanation. <label> is the irrep label of one irreducible representation of the molecular point group (e.g. a1, b2, t1g, ...). <list> is a list of orbital indices within this irrep (e.g. 1,2,4 or 1-8,10,11). p or print will give you the same listing of the orbital occupations as you saw before entering this
menu. After you leave this submenu, you will be back in the occupation numbers main menu.

### 4.3.4 Roothaan Parameters

In open-shell calculations within the restricted Hartree-Fock ansatz (ROHF), the coupling between the closed and the open shells must be specified using two parameters a and b , which depend on the type of the open shell, the number of electrons in it (the electron configuration), but also on the state to be calculated. For example, there are three states arising from the $s^{2} p^{2}$ configuration of an atom $\left({ }^{3} \mathrm{P},{ }^{1} \mathrm{D},{ }^{1} \mathrm{~S}\right)$ which have different values of $a$ and $b$. For the definition of these parameters and their use refer to Roothaan's original paper [22]. For simple cases, define sets these parameters automatically. If not, you have to enter them yourself. In this case, you will get the following message:

```
ROOTHAAN PARAMETERS a AND b COULD NOT BE PROVIDED ...
TYPE IN ROOTHAAN a AND b AS INTEGER FRACTIONS
OR ENTER val FOR AN AVERAGE OF STATES CALCULATION
OR ENTER & TO REPEAT OCCUPATION NUMBER ASSIGNMENT
```

Note that not all open shell systems can be handled in this way. It is possible to specify $a$ and $b$ for atomic calculations with $s^{n}, p^{n}, d^{1}$, and $d^{9}$ configurations and for calculations on linear molecules with $\pi^{n}$ and $\delta^{n}$ configurations. Furthermore, it is possible to do calculations on systems with half-filled shells (where $a=1, b=2$ ). In the literature you may find tabulated values for individual states arising from $d^{n}$ configurations, but these are not correct. Instead, these are parameters for an average of all states arising from these configurations. You can obtain these values if you enter val on the above question. For a detailed description see Section 6.3.

### 4.3.5 Start-MOs for broken symmetry treatments ("flip")

Broken-symmetry treatments suggested by e.g. Noodleman or Ruiz are a popular tool for the calculation of spin coupling parameters in the framework of DFT. As an example one might consider two coupled $\mathrm{Cu}^{I I}$ centers, e.g. for a (hypothetical) arrangement like this:

```
$coord
 0.0 2.7 0.0 cu
 0.0-2.7 0.0 cu
 0.0-6.1 0.0 f
 0.0 6.1 0.0 f
 2.4 0.0 0.0 f
-2.4 0.0 0.0 f
$end
```

The high-spin case, a doublet with an excess alpha electron at each Cu atom, "aa" in an obvious notation, preserves $D_{2 h}$ symmetry, while the low spin state "ba" does
not. For a broken-symmetry treatment it is advidsable to calculate the high-spin state first, and then broken-symmetry state(s); from the energy difference(s) one may calculate approximate values for the spin-spin coupling parameters as described by e.g. the above authors. Access to broken-symmetry states usually is possible by the choice of appropriate start-MOs, followed by an SCF-procedure. Start MOs may be obtained by first applying a localization procedure to the MOs of the high-spin state and then by "moving" localized alpha orbitals to the beta subset.
The preparation of broken-symmetry start-MOs can be done with define (semi)automatically. Prerequisite is a converged wave function for the high-spin state in $C_{1}$-symmetry, that fulfills the aufbau principle.

If in this case one enters flip in the orbital definition menu, define selects the occupied valence orbitals of the system (by an orbital energy criterion, which one can usually accept, unless the system is highly charged and the orbital energies are shifted). Next a Boys orbital localization procedure is carried out, which - depending on the size of the problem - may take some time. Then the user is asked:
ENTER INDICES OF ATOMS OR ELEMENT TO BE MANIPULATED (example: 1,2-3 or "mn")

In case of our above example one may enter "cu", which immediately leads to the following output (a def-SV(P) basis and the B-P functional were used for the highspin state):

RELEVANT LMOS FOR ATOM 1 cuALPHA.												
index	occupation	"energy"	s	p	d	f	(dxx	dyy	dzz	dxy	dxz	dyz)
15	1.000	-0.357	0.01	0.00	0.98		0.20	0.27	0.01	0.50	0.00	0.00
18	1.000	-0.357	0.01	0.00	0.98		0.20	0.27	0.01	0.50	0.00	0.00
20	1.000	-0.335	0.00	0.00	1.00		0.00	0.00	0.00	0.00	1.00	0.00
22	1.000	-0.333	0.01	0.00	0.99		0.13	0.03	0.32	0.00	0.00	0.51
23	1.000	-0.333	0.01	0.00	0.99		0.14	0.03	0.34	0.00	0.00	0.49
BETA :												
39	1.000	-0.326	0.00	0.00	1.00		0.33	0.08	0.09	0.00	0.00	0.50
41	1.000	-0.326	0.00	0.00	1.00		0.33	0.08	0.09	0.00	0.00	0.50
43	1.000	-0.321	0.00	0.00	1.00		0.00	0.00	0.00	0.00	1.00	0.00
46	1.001	-0.318	0.05	0.00	0.95		0.00	0.43	0.51	0.00	0.00	0.00
RELEVANT LMOS FOR ATOM 2 cu ALPHA:												
index	occupation	"energy"	s	p	d	f	(dxx	dyy	dzz	dxy	dxz	dyz)
16	1.000	-0.357	0.01	0.00	0.98		0.20	0.27	0.01	0.50	0.00	0.00
17	1.000	-0.357	0.01	0.00	0.98		0.20	0.27	0.01	0.50	0.00	0.00
19	1.000	-0.335	0.00	0.00	1.00		0.00	0.00	0.00	0.00	1.00	0.00
21	1.000	-0.333	0.01	0.00	0.99		0.13	0.03	0.32	0.00	0.00	0.51
24	1.000	-0.333	0.01	0.00	0.99		0.14	0.03	0.34	0.00	0.00	0.49
BETA :												
40	1.000	-0.326	0.00	0.00	1.00		0.33	0.08	0.09	0.00	0.00	0.50
42	1.000	-0.326	0.00	0.00	1.00		0.33	0.08	0.09	0.00	0.00	0.50

```
44 1.000 -0.321 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00
45 1.001 [-0.318 0.05 0.00 0.95 0.0.0.00 0.43 0.51 0.00 0.00 0.00
a2b : FLIPPING ALPHA TO BETA (default)
b2a : FLIPPING BETA TO ALPHA
r : repeat atom choice
```

As evident from the second column, for each Cu atom five localized alpha and four localized beta orbitals were generated which are of d-type (the sixth column labelled "d" shows values close to 1 , the other columns such close to 0 ). The six columns at the right show the individual contributions of the six cartesian d-functions.

What has to be done to generate start MOs for the "ba"-case? Obviously one of the five localized alpha spin orbitals from the first Cu atom (atom label 1 cu ) has to become a beta spin orbital. These five orbitals have the indices $15,18,20$, 22, 23. In order to avoid linear dependencies, it is advisable to take the orbital that has no beta-analogue. This can be found by comparing the contributions of the six d-functions. In the present example this is the case for the localized alpha orbitals 15 and 18: in contrast to all localized beta orbitals they show significant contributions from $d_{x y}$. One thus enters
a2b
15
and after confirming the replacement of original MOs with the generated start-MOs one is finally asked

```
It is advisable to modify damping and orbital shift in the following way:
$scfdamp start=5.000 step=0.050 min=0.500
$scforbitalshift automatic=1.0
$scfiterlimit 999
Do you want to replace the corresponding entries in the control-file? (y)
```

which should be confirmed, as otherwise the prepared spin state might be destroyed during the SCF iterations.
From this input one may start the $\mathrm{SCF}(\mathrm{HF} / \mathrm{DFT})$-procedure. For recommended choices of DFT functionals and formulae to calculate the coupling parameters from these energy differences please consult the papers of the above-mentioned authors. For reasons of economy, a pre-optimization by a pure (non-hybrid) DFT-functional is reasonable.

Important: For the converged wave function one should check, whether the resulting state is really the desired one. This can quite reliably be done by a Mulliken population analysis. For this purpose, add \$pop to the control file, type ridft -proper or dscf -proper, respectively, and check the signs of the calculated numbers of unpaired electrons in the output.

### 4.4 The General Options Menu

After you specified all data concerning the molecule you want to examine, you are on your way to the last of the four main menus. Before reaching it, you will perhaps get a message like the following:

```
DO YOU WANT TO DELETE DATA GROUPS LIKE
 $energy
 $grad
 $hessian
 $hessian (projected)
 $last energy change
 $maximum norm of internal gradient
 $dipgrad
 $vibrational normal modes
 $vibrational spectrum
 $cartesianforce interspace
LEFT OVER FROM PREVIOUS CALCULATIONS ? DEFAULT(n)
```

define has scanned your input file for this session and found some data groups which might have become obsolete. If they are still acceptable depends on the changes you made during your present define session. They are obviously incorrect if you changed the molecule under consideration; but any change in the basis sets or the occupation numbers will make them dangerous, too, because you might not know some day if they really refer to the basis set which is defined in this control file. As a rough guide, delete them whenever you have made changes in one of the first three main menus during your define session.

After that you will reach the last main menu of define which helps you to control the actions of all TURBOMOLE programs. The meanings of the various options are explained in more detail in the description of the individual programs, therefore only a short explanation will be given here.

Now have a look at the menu:

```
GENERAL MENU : SELECT YOUR TOPIC
scf : SELECT NON-DEFAULT SCF PARAMETER
mp2/cc2: OPTIONS AND DATA GROUPS FOR MP2, CC2, ETC.
ex : EXCITED STATE AND RESPONSE OPTIONS
prop : SELECT TOOLS FOR SCF-ORBITAL ANALYSIS
drv : SELECT NON-DEFAULT INPUT PARAMETER FOR EVALUATION
 OF ANALYTICAL ENERGY DERIVATIVES
 (GRADIENTS, FORCE CONSTANTS)
rex : SELECT OPTIONS FOR GEOMETRY UPDATES USING RELAX
stp : SELECT NON-DEFAULT STRUCTURE OPTIMIZATION PARAMETER
e : DEFINE EXTERNAL ELECTROSTATIC FIELD
dft : DFT Parameters
ri : RI Parameters
rijk : RI-JK-HF Parameters
trunc : USE TRUNCATED AUXBASIS DURING ITERATIONS
marij : MULTIPOLE ACCELERATED RI-J
```

```
dis : DISPLAY MOLECULAR GEOMETRY
list : LIST OF CONTROL FILE
& : GO BACK TO OCCUPATION/ORBITAL ASSIGNMENT MENU
* or q : END OF DEFINE SESSION
```

This menu serves very different purposes. The next subsection deals with commands required to activate and/or specify specific methods of calculation. The subsequent subsection describes commands used to select non-default options. Standard SCF calculations do not require special action, just leave the menu. The final subsection describes the settings for property calculations.

### 4.4.1 Important commands

## DFT calculations

Command dft leads you to the menu:

```
STATUS OF DFT_OPTIONS:
 DFT is NOT used
 functional b-p
 gridsize m3
ENTER DFT-OPTION TO BE MODIFIED
func: TO CHANGE TYPE OF FUNCTIONAL
grid: TO CHANGE GRIDSIZE
 on: TO SWITCH ON DFT
Just <ENTER>, q or '*' terminate this menu.
```

To activate DFT input on and then specify the grid for the quadrature of exchangecorrelation terms. TURBOMOLE offers grids 1 (coarse) to 7 (finest), and the multiple grids m 3 to m 5 [4]. The latter employ a coarser grid during SCF iterations, and grid 3 to grid 5 in the final SCF iteration and the gradient evaluation. Default is grid m 3 , for clusters with more than 50 atoms use m4.

The functionals supported are obtained with the command func:

## SURVEY OF AVAILABLE EXCHANGE-CORRELATION ENERGY FUNCTIONALS

FUNCTIONAL	TYPE	EXCHANGE	\| CORRELATION	REFERENCES
slater-diracexchange	LDA	S	I	\| 1,2
			1	
s-vwn	LDA	S	I VWN(V)	\| 1-3
vwn	LDA	,	I VWN(V)	13
s-vwn_Gaussian	LDA	S	I VWN(III)	\| 1-3
pwlda	LDA	S	1 PW	\| 1,2,4
becke-exchange	GGA	S+B88	\|	\| 1,2,5
b-lyp	GGA	S+B88	\| LYP	\| 1,2,6
b-vwn	GGA	S+B88	\| VWN(V)	\| 1-3,5
lyp	GGA	\|	\| LYP	16
b-p	GGA	S+B88	\| VWN(V)+P86	\| 1-3,5,7
pbe	GGA	S+PBE (X)	\| PW+PBE(C)	\| 1,2,4,8
tpss	MGGA	S+TPSS (X)	$1 \mathrm{PW}+\mathrm{TPSS}(\mathrm{C})$	\| 1,2,4,14
bh-lyp	HYB	0.5 (S+B88)	\| LYP	\| 1,2,5,6,9
		+0.5HF	\|	\|
b3-1yp	HYB	$0.8 \mathrm{~S}+0.72 \mathrm{~B} 88$	\| 0.19VWN(V)	\| 1-3,5,6,10
		+0.2HF	\| +0.81LYP	\|
b3-lyp_Gaussian	HYB	$0.8 \mathrm{~S}+0.72 \mathrm{~B} 88$	\| 0.19VWN(III)	\| 1-3,5,6,10
		+0.2HF	\| +0.81LYP	\|
pbe0	HYB	0.75 (S+PBE (X))	\| PW+PBE(C)	\| 1,2,4,8,11
		$+0.25 \mathrm{HF}$		\|
tpssh	HYB	0.9 (S+TPSS (X))	\| PW+TPSS (C)	\| 1,2,4,14,15
		+0.1HF	1	\|
1 hf	EXX	EXX	1	\| 12,13
b97-d	GGA	B97 refit	\| B97 refit	\| 16
b2-plyp	DHYB	0.47 (SB88)+0.53	F10.73LYP+0.27P	\| 17

Default is $\mathrm{b}-\mathrm{p}$, i.e. B-P86, which is probably best for the whole of Chemistry 23$]$. For main group compounds we recommend b3-lyp; note that GAUSSIAN uses partly different implementations 23.
The programs dscf and grad are used to carry out conventional DFT treatments, i.e. $J$ and $K$ are evaluated without approximations.

## RI-J calculations

For non-hybrid functionals we strongly recommend the RI- $J$ procedure, which speeds up calculations by a factor 10 at least (as compared to conventional treatments) without sacrificing accuracy. Command ri gives:

STATUS OF RI-OPTIONS:
RI IS NOT USED
Memory for RI: 200 MB
Filename for auxbasis: auxbasis

ENTER RI-OPTION TO BE MODIFIED
m: CHANGE MEMORY FOR RI

```
 f: CHANGE FILENAME
 jbas: ASSIGN AUXILIARY RI-J BASIS SETS
 on: TO SWITCH ON RI
Use <ENTER>, q, end, or * to leave this menu
```

Activate RI- $J$ with on, and choose with $m$ the memory you can dedicate to store three-center integrals (Keyword: \$ricore), default is 200 MB . The more memory, the faster the calculation.

A rough guide: put \$ricore to about $2 / 3$ of the memory of the computer. Use OS specific commands (top on most UNIX systems), during an ridft run to find the actual memory usage and then adjust \$ricore, the keyword in control specifying memory.
If the option $j$ bas is selected, define enters a submenu which allows the assignment of auxiliary basis sets (for an explanation of the menu items see Section 4.2). Where available, the program will select by default the auxiliary basis sets optimized for the orbital basis used. Please note that treatment of systems with diffuse wavefunctions may also require an extension of the auxiliary basis. For this cases enlarge the sets of s- and p-functions with diffuse functions.
The RI- $J$ option is only supported by programs ridft and rdgrad, if you use jobex to optimize molecular geometry, put: nohup jobex -ri ...

## MARI-J option

RI- $J$ calculations can be done even more efficiently with the Multipole Accelerated RI- $J$ (MARI- $J$ ) option, especially for larger molecules where almost linear scaling is achieved [24.

```
Parameters:
 1) precision parameter: 1.00E-06
 2) maximum multipole l-moment: }1
 3) maximum number of bins: }
 4) minimum separation of bins: 0.00
 5) maximum allowed extension: 20.00
 6) threshold for multipole neglect: 1.00E-18
Enter the number to change a value or <return> to accept all.
Just rely on the defaults.
```


## Multiple auxiliary basis sets

With the command trunc you can switch on this option. Effect: a reduced auxiliary (or fitting) basis to represent the electron density is employed during SCF iterations, the final SCF iteration and the gradient are computed with the full auxiliary basis.

```
truncated RI ALREADY SWITCHED ON
DO YOU WANT TO SWITCH OFF truncation ? (default=no)
```

Note: trunc is presently not compatible with marij!

## RI in SCF calculations

Considerable savings in CPU times are achieved with the RI technique for both Coulomb $J$ and exchange $K$ terms in SCF calculations, the RI-JK method [25], provided large basis sets are employed, e.g. TZVPP, cc-pVTZ, or cc-pVQZ. With rijk you get:

```
STATUS OF RI-OPTIONS:
 RI IS NOT USED
 Memory for RI: 200 MB
 Filename for auxbasis: auxbasis
ENTER RI-OPTION TO BE MODIFIED
 m: CHANGE MEMORY FOR RI
 f: CHANGE FILENAME
 jkbas: ASSIGN AUXILIARY RI-JK BASIS SETS
 on: TO SWITCH ON RI
Use <ENTER>, q, end, or * to leave this menu
```

For an explanation of the menu items see Section 4.4.1. RI-JK calculations can be carried out with the program ridft.

## Optimization to minima and transition structures using Statpt

Structure optimizations can be carried out by the program statpt. For minimizations no additional keywords are required. The default values are assumed, which work in most of the cases. Structure optimization is performed in internal coordinates if they have been set. Otherwise, Cartesian coordinates are used. One can switch the optimization in internal coordinates on or off, respectively in internal redundant or cartesian coordinates. For transition structure optimizations the index of transition vector has to be set to an integer value $>0$ ( 0 means structure minimization). The value of the index specifies transition vector to follow during the saddle point search. Note, that Hessian eigenpairs are stored in ascending order of the eigenvalues, i.e. the eigenpair with the smallest eigenvector has the index 1.

The command stp gives:

```
CONVERGENCE CRITERIA:
```

```
thre 1.000000E-06 thre : threshold for ENERGY CHANGE
```

thre 1.000000E-06 thre : threshold for ENERGY CHANGE
thrd 1.000000E-03 thrd : threshold for MAX. DISPL. ELEMENT
thrd 1.000000E-03 thrd : threshold for MAX. DISPL. ELEMENT
thrg 1.000000E-03 thrg : threshold for MAX. GRAD. ELEMENT
thrg 1.000000E-03 thrg : threshold for MAX. GRAD. ELEMENT
rmsd 5.000000E-04 rmsd : threshold for RMS OF DISPL.
rmsd 5.000000E-04 rmsd : threshold for RMS OF DISPL.
rmsg 5.000000E-04 rmsg : threshold for RMS OF GRAD.

```
rmsg 5.000000E-04 rmsg : threshold for RMS OF GRAD.
```

```
defl : set default values.
OPTIMIZATION refers to
int off int: INTERNAL coordinates
rdn off rdn: REDUNDANT INTERNAL coordinates
crt on crt: CARTESIAN coordinates
NOTE : options int and crt exclude each other
ENTER STATPT-OPTIONS TO BE MODIFIED
\begin{tabular}{lll}
itvc & 0 & itvc : change INDEX OF TRANSITION VECTOR \\
updte bfgs & updte: change method of HESSIAN UPDATE \\
hsfrq & 0 & hsfrq: frequency of HESSIAN CALCULATION \\
kptm & 0 & kptm : FREEZING transition vector INDEX \\
hdiag \(5.000000 \mathrm{E}-01\) & hdiag: change DIAGONAL HESSIAN ELEMENTS \\
rmax \(3.000000 \mathrm{E}-01\) & rmax : change MAX. TRUST RADIUS \\
rmin \(1.000000 \mathrm{E}-04\) & rmin : change MIN. TRUST RADIUS \\
trad \(3.000000 \mathrm{E}-01\) & trad : change TRUST RADIUS \\
--- \\
Just <ENTER>, q or ' ' terminate this menu.
\end{tabular}
```


## Excited states, frequency-dependent properties, and stability analysis

Excited state calculations with RPA or CIS (based on HF-SCF) and TDDFT procedures as well as stability analyses (SCF or DFT) are carried out by the program escf.

You will need a well converged HF-SCF or DFT calculation that were converged to at least \$scfconv=7, see Section 4.4.2.
Details of calculations are specified with the command ex:
MAIN MENU FOR RESPONSE CALCULATIONS

```
OPTION | STATUS | DESCRIPTION
--
rpas | off | RPA SINGLET EXCITATIONS (TDHF OR TDDFT)
ciss | off | TDA SINGLET EXCITATIONS (CI SINGLES)
rpat | off | RPA TRIPLET EXCITATIONS (TDHF OR TDDFT)
cist | off | TDA TRIPLET EXCITATIONS (CI SINGLES)
polly | off | STATIC POLARIZABILITY
dynpol | off | DYNAMIC POLARIZABILITY
single | off | SINGLET STABILITY ANALYSIS
triple | off | TRIPLET STABILITY ANALYSIS
nonrel | off | NON-REAL STABILITY ANALYSIS
ENTER <OPTION> TO SWITCH ON/OFF OPTION, * OR q TO QUIT
```

If you have selected an option, e.g. rpas, and quit this menu, you will get another menu:

SELECT IRREP AND NUMBER OF STATES
ENTER ? FOR HELP, * OR Q TO QUIT, \& TO GO BACK
This should be self-evident.

## MP2 and RI-MP2

We recommend to use MP2 together with the RI technique: program rimp2 or ricc2. This is more efficient and supports the frozen core option in the gradient calculation.
The entry mp2 leads to a submenu which allows to set some keywords for MP2 and RI-MP2 calculations, e.g. defining frozen orbitals, maximum memory usage, or assign auxiliary basis sets for RI-MP2 calculations, etc. If you want to use ricc2, you have to use the entry cc2 and the submenu ricc2 in order to assign MP2 as wavefunction model. It covers all keywords required for rimp2 calculations, Mandatory for rimp2 runs is the specification of the auxiliary basis set using the menu entry cbas. (Alternatively, the rimp2prep tool can be used to set the keywords needed for rimp2 calculations.)
Conventional MP2 calculations with mpgrad require a number of additional settings for which it is recommended to invoke the interactive tool mp2prep. For geometry optimizations with jobex use nohup jobex -level mp2 -ri ...

## CC2 calculations

The entry cc2 leads to a submenu which allows to set a number of keywords essential for calculations with the program ricc2. In particular it allows the assignment of auxiliary basis sets (mandatory for ricc2!), the specification of frozen orbitals, and the definition of a scratch directory and of the maximum core memory usage.

## 2nd analytical derivatives

The program aoforce computes force constants and IR and Raman Spectra on SCF and DFT level. Analytical second derivative calculations can directly be started from converged SCF or DFT calculations. Note, that the basis is restricted to $d-$ functions, and ROHF as well as broken occupation numbers are not allowed. For better efficiency, in case of larger systems, use the keyword \$maxcor as described in Chapter 11 to reduce computational cost. RI will be used if the RI option for DFT has been specified.

### 4.4.2 Special adjustments

Adjustments described by the following menus are often better done directly in the control file; have a look at the keywords in Chapter 15. For common calculations just start with the defaults, and change keywords directly in control if you encounter problems with your calculation.

## SCF options

ENTER SCF-OPTION TO BE MODIFIED

```
conv : ACCURACY OF SCF-ENERGY $scfconv
thi : INTEGRAL STORAGE CRITERIA $thize $thime
ints : INTEGRAL STORAGE ALLOCATION $scfintunit
iter : MAXIMUM NUMBER OF ITERATIONS $scfiterlimit
diis : DIIS CONVERGENCE ACCELERATION $scfdiis
damp : OPTIONS FOR DAMPING $scfdamp
shift: SHIFTING OF ORBITALS $scforbitalshift
order: ORDERING OF ORBITALS $scforbitalorder
fermi: THERMAL SMEARING OF OCC. NUMBERS $fermi
```

By the command \$fermi you can switch on smearing of occupation numbers, and thus automatically optimize occupations and spin.

## Menu drv

The most important of the derivative menus is the first one which tells the programs which derivatives to calculate. This is only necessary for special purposes and you should better not change default options.


The handling of these options is very simple. With the exception of tol, all are logical switches which are either true (or on, active) or false (or off, inactive). You can switch between the two states if you enter, for example, crt (to switch calculation of Cartesian first derivatives on) or -crt (to switch it off). The options crt, sec and bas should provide no problems. glb refers to a global scaling factor for all basis set exponents. Imagine that you would like to replace your basis set, which contains basis functions

$$
\chi_{\mu}=\left(x-x_{0}\right)^{l}\left(y-y_{0}\right)^{m}\left(z-z_{0}\right)^{n} \exp \left[-\eta_{\mu}\left(r-r_{0}\right)^{2}\right]
$$

by another basis set which contains basis functions

$$
\chi_{\mu}=\left(x-x_{0}\right)^{l}\left(y-y_{0}\right)^{m}\left(z-z_{0}\right)^{n} \exp \left[-\alpha \eta_{\mu}\left(r-r_{0}\right)^{2}\right]
$$

where $\alpha$ is the same for all primitive basis functions $\chi_{\mu}$. With command glb you are able to calculate analytical derivatives of the total energy with respect to $\alpha$ and can thus easily determine the optimum $\alpha$.
dip enables you to calculate the first derivatives of the electric dipole moment with respect to nuclear displacements which gives you infrared intensities. pol allows you to calculate the contribution of the nuclear rearrangement on the electric polarizability. fa finally performs only a frequency analysis which means that aoforce will read the force constant matrix (\$hessian or \$hessian (projected)), diagonalize it and give you the frequencies and normal modes. tol is not a logical switch as the other options in this menu, but a cutoff threshold for the derivative integrals, i.e. integrals below this threshold will be neglected in the derivative calculations.

Entering * will bring you to the second derivative submenu.

## Debug Options for the Derivative Programs

The following menu deals only with some debug options for grad. Use them with caution, each of them can produce lots of useless output:

```

```



```
lol
 | | (WARNING : this produces large outputs!)
debug2e | F | display 2e shell contributions to desired derivatives
 | | (WARNING : this produces VERY large outputs!)
debugvib| F | debug switch for vibrational analysis (force only)
notrans | F | disable transfer relations (gradient only!)
novirial| F | disable virial scaling invariance in basis set
 | | optimizations (gradient only)
use <opt> for enabling, -<opt> for disabling option <opt>
<&> will bring you back to GENERAL MENU without more changes
<RETURN> OR * OR q(uit) WILL TERMINATE THIS MENU
```

As there is no need to use these options normally and the menu text is self-explaining, no further description will be given. Note that all options are logical switches and may be enabled and disabled the same way as shown for the last menu. Entering * will bring you to the last derivative submenu.

### 4.4.3 Relax Options

Program relax has a huge variety of options to control its actions which in program define are grouped together in eight consecutive menus. These are only briefly described in the following sections; for a more detailed discussion of the underlying algorithms refer to the documentation of program relax (see Section 5.3). Only experts should try to change default settings.

## Optimization Methods

The first of the relax subgenus deals with the type of optimization to be performed:


You can choose between a geometry optimization in the space of internal coordinates (in this case you will need definitions of internal coordinates, of course) or in the space of Cartesian coordinates (these possibilities are mutually exclusive, of course). Furthermore optimizations of basis set parameters (exponents, contraction coefficients and scaling factors) or of a global scaling factor is possible (these options are also exclusive, but can be performed simultaneous to a geometry optimization). For the geometry optimization you should normally use internal coordinates as they provide better convergence characteristics in most cases.

## Coordinate Updates

The next submenu deals with the way relax updates the old coordinates. You may choose a maximum change for the coordinates or you can allow coordinate updates by means of extrapolation:

```
coordinate update options for RELAX
dqmax <real> : coordinates are allowed to change by at most
 <real> (DEFAULT : 0.3000) a.u.
 polish : perform an interpolation or extrapolation of
 coordinates (DEFAULT :y)
 -polish : disable inter/extrapolation
 <RETURN> OR * OR q(uit) WILL TERMINATE THIS MENU
```

These options result in better convergence of your optimization in most cases.

## Interconversion Between Internal and Cartesian Coordinates

The interconversion between internal and Cartesian coordinates is not possible directly (in this direction). Instead it is performed iteratively. The following options control this conversion:

```
interconversion options for RELAX

option | description
--
on | switch on interconversion (DEFAULT: off)
qconv <r> | set convergence threshold for interconversion
 | of coordinates to <r>. DEFAULT : <r> = .1000E-09
iter <i> | allow at most <i> iterations for interconversion
 | of coordinates. DEFAULT : <i> = 25
crtint | transform cartesian into internal coordinates (DEFAULT=n)
intcrt | transform internal into cartesian coordinates (DEFAULT=n)
grdint | transform cartesian into internal gradients (DEFAULT=n)
hssint | transform cartesian into internal hessian (DEFAULT=n)
use -<opt> for disabling any interconversion option
<RETURN> OR * OR q(uit) WILL TERMINATE THIS MENU
```

The options qconv and iter are used in each normal relax run to determine the characteristics of the back-transformation of coordinates into the internal space. With the other options and interconversion switched on, you can force relax to perform only the specified coordinate transformation and write the transformed coordinates to file control. To achieve this, enter on to switch to the transformationonly mode, and one of the last four options, e.g. crtint, to specify the desired transformation.

## Updating the Hessian

relax provides a variety of methods to generate an updated Hessian every cycle. This includes the well known methods such as BFGS, DFP, or MS update methods as well as some less common procedures:

```

OPTIONS FOR UPDATING THE HESSIAN
--
\begin{tabular}{l|l|l}
none & F & NO UPDATE (STEEPEST DESCENT) \\
bfgs & F & | BROYDEN-FLETCHER-GOLDFARB-SHANNO UPDATE \\
dfp & F & DAVIDON-FLETCHER-POWELL UPDATE \\
bfgs-dfp & F & COMBINED (BFGS+DFP) UPDATE \\
ms & F & MURTAGH-SARGENT UPDATE \\
schlegel & F & SCHLEGEL UPDATE \\
diagup & F & DIAGONAL UPDATE (AHLRICHS/EHRIG) \\
multidim & F & RANK > 2 BFGS-TYPE UPDATE \\
ahlrichs & T & MACRO : AHLRICHS UPDATE (DEFAULT)
\end{tabular}
USE <opt> FOR ENABLING OPTION <opt> AND THUS DISABLING
ALL OTHER OPTIONS.
<RETURN> OR * OR q(uit) WILL TERMINATE THIS MENU
```

We recommend to use the default method ahlrichs which provides excellent convergency in most cases.

## General Boundary Conditions for Update

The force constant matrix will only be updated if least mingeo cycles exist. The maximum number of cycles used for the update is specified by the parameter maxgeo. Normally the default values provided by define need not be changed.

DEFINE BOUNDARY CONDITIONS FOR UPDATE

```
mingeo <i> | START UPDATE IF THERE ARE AT LEAST <i> CYCLES
 | DEFAULT : min 3
maxgeo <i> | USE LAST <i> CYCLES FOR UPDATE, DEFAULT : max 4
```

<RETURN> OR * OR q(uit) WILL TERMINATE THIS MENU

## Special Boundary Conditions for Ahlrichs and Pulay Updates

For the default update method ahlrichs some additional control parameters are available which can be defined in this menu:

DEFINE BOUNDARY CONDITIONS FOR AHLRICHS OR PULAY UPDATE

```

option | description
modus <i> | DEFINE MODUS FOR GDIIS PROCEDURE : MINIMIZE
 | <dq|dq> IF <i> = 0
 | <g|dq> IF <i> = 1
 | <g|g> IF <i> = 2
 | <dE> IF <i> = 3
 | DEFAULT : <i> = 1
fail <r> | IGNORE GDIIS IF <g|dq> /| <g|dq> | IS
 | LARGER THAN -<r>. DEFAULT : <r> = 0.1
<RETURN> OR * OR q(uit) WILL TERMINATE THIS MENU
```

For detailed description consult Section 5.3.

```
OPTIONS FOR MANIPULATING THE HESSIAN
--
 option | description
diagonal | RESTRICT UPDATE TO DIAGONAL-ELEMENTS IF
 | METHOD IS BFGS,DFP OR MS. DEFAULT=n
offreset | DISCARD OFF-DIAGONAL ELEMENTS. DEFAULT=n
offdamp <r> | DAMP OFF-DIAGONAL ELEMENTS BY 1/(1+<r>) DEFAULT= 1.000
damp <real> | DAMP UPDATE BY 1/(1+<real>), DEFAULT= .0000E+00
scale <real> | SCALE INPUT HESSIAN BY <real>, DEFAULT= 1.000
```

```
allow <real> | SCALE INPUT HESSIAN BY <real>/|DE| IF |DE|,
 | THE OBSERVED ABSOLUTE CHANGE IN ENERGY, IS
 | OBEYING THE CONDITION |DE| > <real> > 0.
 | DEFAULT : NO SCALING
min <real> | DO NOT ALLOW EIGENVALUES OF HESSIAN TO DROP
 | BELOW <real>. DEFAULT= .1000E-02
reset <real> | USE <real> AS A RESET VALUE FOR TOO SMALL
 | EIGENVALUES (CP. min). DEFAULT= .1000E-02
max <real> | DO NOT ALLOW EIGENVALUES OF HESSIAN TO BECOME
 | LARGER THAN <real>. DEFAULT= 1000.
```

WITH THE EXCEPTION OF min, reset AND max, ALL OPTIONS MAY BE
DISABLED BY ENTERING -<opt>
<RETURN> OR * OR q(uit) WILL TERMINATE THIS MENU

## Initialization of the Hessian

Finally there are some options to control the choice of the initial Hessian during your geometry optimization:

```
--
FORCE CONSTANTS INITIALIZATION OPTIONS FOR RELAX

OPTION | DESCRIPTION
--
off | switch off initialization (DEFAULT: on)
cart | use analytical cartesian hessian provided by a
 | 2nd derivatives calculation. DEFAULT(n)
diag | use diagonal matrix with diagonal elements set
 | individually within data groups $intdef or
 | $basis or $global. DEFAULT(n)
unit <r> | use multiple of the unit matrix (H = <r>*E).
 | DEFAULT(n) - DEFAULT <r> = 1.000
NOTE that theSE OPTIONS ARE MUTUALLY EXCLUSIVE
<RETURN> OR * OR q(uit) WILL TERMINATE THIS MENU
```

Option off will be used if you have already a good Hessian from a previous calculation which may be used. cart describes an even better state where you have a Hessian from a calculation of the second derivatives available (aoforce). The other two options describe real procedures for initialization of the Hessian. Default values: stretches (0.5), angles (0.2).

### 4.4.4 Definition of External Electrostatic Fields

This submenu allows you to calculate first and second numerical derivatives of the energy with respect to an external electric field. The first three options should be clear; 1st and 2nd are logical switches which are turned on and off the usual way (1st or -1 st) and delta is the increment for the numerical differentiation, that is,
the finite value of the external field, which replaces the (ideally) differential field:

```
loc
```

geofield gives the possibility to perform a whole geometry optimization under the influence of a finite external field and thus to obtain the (distorted) minimum geometry in this field. To do this, an external electrostatic field must be defined explicitly which can be done using command man. Note that geofield must also be switched on if any properties are to be evaluated in the presence of an electric field. The most prominent example is the calculation of hyperpolarizabilies.

Take Care, due to some inconsistencies in define it is always necessary to switch on the field calculations manually. Therefore edit the control file after having finished your define session and enter on after the entries of fields and geofield.

### 4.4.5 Properties

The program moloch used for this purpose is currently being revamped, and will then be much simpler to use. The subsequent description for an older version may not work in all cases - sorry for that.

If you enter prop in the general menu, define first will check whether the data group $\$$ properties does already exist in your control file or in a file referenced therein. If this is not the case you will be asked to specify the file on which \$properties shall be written:

```
data group $properties has not yet been specified
FOR INITIALIZING <moloch> KEYWORDS ENTER
 [return] : WRITE TO CONTROL FILE control (DEFAULT), OR
 filename : WRITE TO ANOTHER FILE
```

Afterwards you will get the following submenu which allows you to control all possible actions of program moloch:

```
switch on one or more of the following options <i>
<i> = 1,..., }
for switching off option <i>, specify -<i>
(1) trace off
(2) moments off
(3) potential off
(4) cowan-griffin off
(5) localization off
(6) population analyses off
(7) plot off
(8) firstorder off
selecting an already active option indicates that
suboptions shall be modified
* or q(uit) = quit | for help, type help <integer>
```

All options in this menu are selected by entering their number as indicated in the first column. For example, to switch on option trace enter 1. The flag off will then change to active. To switch off an option enter its negative number, e.g. -1 for trace. Most of the options require additional input and will therefore lead you to further submenus. These are briefly described below.

## Option trace

trace will calculate the trace of density times overlap matrix:

$$
N=\operatorname{tr}\{\mathbf{D S}\}
$$

If the orbitals are orthonormal, $N$ should yield the total number of electrons in your molecule. If this is not true, your MO-vector will most probably be erroneous. For example, the vector might belong to another geometry or basis set. As this is a very sensitive test for errors like these and the calculation requires almost no time, you should always switch on this option.

## Option moments

This option leads you to the following submenu:


This menu serves to specify the electrostatic moments to be calculated (0th=charge, 1 st=dipole moment, 2 nd=quadrupole moment, 3rd=octuple moment). The reference point is the origin of the coordinate system used in the calculation. The value of any calculated moment will be independent of this reference point, if all lower moments are zero. The default for the reference point is the origin, i.e. the coordinate system used for the calculation of the moments will be the same as the one in which the atomic coordinates are specified. The reference point may be changed by typing point with the three new coordinates appended. Alternatively you may choose the coordinates of one of the atoms as reference point by entering atom and the atom index.

## Option potential

This option collects all possible quantities related to the electrostatic field created by the molecular charge distribution. This includes the following suboptions:

```
list of suboptions :
pot - electrostatic potential
fld - electrostatic field
fldgrd - electrostatic field gradient
shld - diamagnetic shielding
file - file reference
* - quit
```

The meaning of the four suboptions pot, fld, fldgrd and shld will probably present no problems to you. For each of them, however, you will have to specify at which point(s) this property should be calculated. This is accomplished by one or more data groups \$points in file control. After you chose one or more of the above options, you will therefore reach the next submenu which deals with the specification of these data groups:

```
there are 1 data groups $points
manipulate data group(s) $points
a - add another data group
m <integer> - modify <integer>th data group
m all - modify all data groups
d <integer> - delete <integer>th data group
d all - delete all data groups
off <integer> - switch off <integer>th data group
off all - switch off all data groups
on <integer> - switch on <integer>th data group
on all - switch on all data groups
s - scan through data groups
* - quit
```

The first line informs you how many of these data groups already exist in your control file. Each of these data groups may consist of several points at which the properties will be calculated. You may now create new data groups, delete old
ones or simply switch on or off individual data groups (without deleting them from control). The number of different data groups \$points as well as the number of points in each of them are not limited. However, if you use many points, you should consider specifying them in a separate file. This is most easily done using option file in the potential menu. This option will create a file for your data groups $\$ p o i n t s$ and will write a reference of this file to file control.

## Option cowan-griffin

This option activates the computation of the first order relativistic correction to the energy as given by the expectation value of the Cowan-Griffin operator.

## Option localization

Specifying option localization will switch on a Boys localization of molecular orbitals. define by default chooses a set of MOs to be localized according to a certain threshold for the orbital energy. Information about these are displayed like this:

```
BOYS localization will be performed with respect to x y z
number of sweeps = 10000
subset of molecular orbitals to be localized :
---> all occupied molecular orbitals
 with orbital energy above -2.00000 Hartree
```


you are employing default options for localization
do you want to modify them ? DEFAULT(n)

If you want to change the MO selection or other options for the localization enter y at this point (By default or when typing $n$ you will reach the moloch options menu again). You will then be asked whether to change the MO selection method. If you want this, you will enter a little submenu where you can choose one of three possible selection procedures:
all selects all occupied orbitals
thr selects all occupied orbitals with orbital energy larger than a certain threshold
man enables you to select the MOs manually later in this section
If the selection method thr is specified you then will be asked for the threshold to be applied for the selection. Afterwards you have the possibility to change some other topics concerning the localization:

- specify other localization directions
- switch on utilization of localized orbitals for population analysis and/or preparation of plot data within the same moloch run
- set the maximum number of sweeps in the localization procedure
- specify a file where localized orbitals shall be written to


## Option population analyses

When activating this option you first have to specify whether the population analysis (PA) should be performed in the CAO (default) or AO basis. Afterwards define will ask you whether you want to perform a Mulliken population analysis. In this case, the following submenu will be displayed:

```
add or delete one or more special options for a
mulliken population analysis
 option | status | description
-------- |-------- |--
 spdf | F | compute MO contributions to atomic
 | brutto populations
molap | F | compute MO contributions to atomic
 | overlap populations
 netto | F | compute atomic netto populations
 irpspd | F | compute IRREP contributions to atomic
 | | brutto populations
 irpmol | F | compute IRREP contributions to atomic
 | | overlap populations
mommul | F | print electrostatic moments resulting
 | | from atomic charges
-------|---------|--
-<option> : switch off <option>
* or q(uit) : leave this menu
```

Here you can activate several optional quantities to be computed along with the Mulliken PA. To switch on one or more of these options you must enter the corresponding option keywords, e.g. spdf netto for computation of atomic neto populations and MO contributions to atomic brutto populations. The status flags for these tasks will then change from F (false) to T (true). To switch off any option you simply have to enter the corresponding keyword preceded by a '-', e.g. -netto for disabling calculation of atomic netto populations.

After having left the Mulliken PA section you will be asked whether a population analysis based on occupation numbers (a modified Roby-Davidson PA) should be performed by moloch. When typing y you will see the following submenu, where you can switch on several special options for the PA in the same manner as described above.

```
add or delete one or more special options for a
population analysis based on occupation numbers
 option | status | description
 --------|---------|---
momao | F | compute MO contributions to modified
| | atomic orbital (MAO) occupation numbers
maodump | F | dump all MAOs onto standard output
maofile | F | write MAOs onto a separate file
select | F | write only those MAOs which have been
 | | employed in the population analysis
all | F | write all MAOs
--------|---------|---
note that the options select and all are complementary
-<option> : switch off <option>
* or q(uit) : leave this menu
```

Afterwards you have the possibility to change the criterion to be applied for the selection of modified atomic orbitals (MAOs) within the following little submenu:

```
global criterion for selection of Modified Atomic Orbitals (MAOs) :

exceed a threshold of . }100

specify the appropriate option if you want to use another
global criterion for selecting MAOs
option | status | description
--------|--------|---
eig <r> | T | select by eigenvalues of the
| | 'atomic' density matrices
occ <r> | F | select by occupation numbers
---------|--------|--
<r> is the selection threshold (DEFAULT= . }1000\mathrm{)
* or q(uit) : leave this menu
```

The criterion applied by default is the so-called atomic density eigenvalue with a threshold of 0.1. You can switch the criterion to occupation numbers by entering occ. If you also want to change the threshold, you just have to append its new value to the selection keyword, e.g. occ .2. Finally you can select or disable various options in connection with the computation of shared electron numbers (SEN) within the following menu:

```
actual settings for data group $shared electron numbers
 2-center shared electron numbers will be computed;
 values are printed if absolute value exceeds .0100
 3-center shared electron numbers will be computed;
 values are printed if absolute value exceeds .0100
 4-center shared electron numbers will be computed;
 values are printed if absolute value exceeds .0100
add or delete one or more options for the
computation of Shared Electron Numbers (SEN)
 option | status | description
 --------|---
 2c <r> | T | compute 2-center SEN and print if
 | |SEN| > <r> (DEFAULT = .1000E-01)
 3c <r> | T | compute 3-center SEN and print if
 | |SEN | > <r> (DEFAULT = .1000E-01)
 4c <r> | T | compute 4-center SEN and print if
 | |SEN| > <r> (DEFAULT = .1000E-01)
 --------|--------|--
nosym | F | switch off use of symmetry
 orbs | F | compute orbital contributions to SEN
 irreps | F | compute irrep contributions to SEN
 --------|--------|--
 -<option> : switch off <option>
 * or q(uit) : leave this menu
```

The procedure for changing the options is the same as described above. By default calculation of 2-, 3- and 4-center SENs will be enabled with thresholds of 0.01 each.

## Option plot

This option allows you to prepare the data needed for contour plots of orbital amplitudes or total electron densities. We do not recommend to prepare plotting data this way; an easier method-with an easier syntax - is to generate these data directly by the programs, where densities (also MP2 or excited ones) and Molecular orbitals are calculated. This is described in Chapter 13. If you nevertheless want to prepare the input for plotting data as needed by moloch using define, on activating plot you get the following menu:

```
there are 1 data groups $grid
manipulate data group(s) $grid
 a - add another data group
m <integer> - modify <integer>th data group
m all - modify all data groups
d <integer> - delete <integer>th data group
d all - delete all data groups
off <integer> - switch off <integer>th data group
off all - switch off all data groups
on <integer> - switch on <integer>th data group
on all - switch on all data groups
s - scan through data groups
* - quit
```

The commands in this menu serve for the manipulation of data groups \$grid in an analogous way as described for \$points in the potential section above. \$grid data groups contain the input information necessary to create the plot data by moloch (one data group for each plot). If you want to add a new data group you will enter this submenu:

```
specify the input orbital / input density :
mo <label> - use occupied molecular orbital <label>
mo density - use one electron density built from the
 occupied molecular orbitals
lmo <i> - use localized molecular orbital no. <lmo>
mao <i> <k> - use modified atomic orbital no. <i>
 centered on atom no. <k>
help - explanation of the syntax for <label>
* - quit
```

Here you may specify the orbital to be plotted. To plot the amplitude of the fifth orbital in irrep a1, e.g., you would enter mo 5a1. Equivalently you can use localized orbitals from a Boys localization procedure or modified atomic orbitals as obtained in a Roby-Davidson-Ahlrichs-Heinzmann population analysis. In the latter cases you will not have to enter an irrep label, as these orbitals are necessarily in $C_{1}$ symmetry. Instead you will have to enter the index of the orbital to be plotted (and for option mao the index of the atom at which it is situated). In all cases you will additionally have to specify the plane in which the amplitudes or densities will be monitored. To do this, you have to declare two vectors which span that plane and the origin of this new coordinate system relative to the one in which the atomic coordinates are given. Furthermore, you will have to create a grid of points on this plane. The orbital amplitude or electron density will then be calculated for every point in this grid. The grid is created by telling define the range to be included along both vectors spanning the plane (where the unit in each direction is the length of the corresponding basis vector) and the number of points to be calculated in this range. It is advantageous to use a wide grid while you test the ranges or planes which give the best results and then to switch to a finer grid for the final calculation. Finally input (MO vector) and output (plot data) files can be specified.
In case you do not want to add a new data group as described above but to change
an existing one, you will be asked which one of the specifications you want to modify.

## Chapter 5

## Calculation of Molecular Structure and Ab Initio Molecular Dynamics

### 5.1 Structure Optimizations using the Jobex Script

In its normal mode of operation, the shell script jobex controls and executes automatic optimizations of molecular geometry parameters. It will cycle through the direct SCF, gradient and force relaxation programs and stop if either the maximum number of cycles is reached or the convergence criteria (change in the total energy, maximum norm of the gradient) are fulfilled. By default, the executable programs are taken from the load modules library within the TURBOMOLE directory.

### 5.1.1 Options

Given a shell the usage is:

```
nohup jobex &
```

This command invokes structure optimization using the default program statpt. Structure optimizations using program relax can be performed using -relax flag:
nohup jobex -relax \&
nohup means that the command is immune to hangups, logouts, and quits. \& runs a background command. jobex accepts the following arguments controlling the level of calculation, convergence criteria and many more (for example nohup jobex -gcart $4 \&$ ):

-gcart integer	converge maximum norm of cartesian gradient up to $10^{(- \text {integer }>)}$ atomic units (default: 3 )
-c integer	perform up to integer cycles (default: 20)
-dscf	begin with a direct SCF step
-grad	begin with a gradient step
-statpt	begin with a force relaxation step
-relax	use the relax program for force relaxation
-trans	perform transition state search
-level level	define the optimization level, level=scf, mp2, cc2, or uff (default is scf).
-ri	use RI modules ridft and rdgrad (fast Coulomb approximation) instead of dscf and grad as well as rimp2 instead of mpgrad
-rijk	in connection with '-level cc2', the RI-JK versions of HF and CPHF are switched on
-ex	perform excited state geometry optimization using egrad
-1 <path>	employ programs from directory <path>
-ls <path>	load scripts from directory <path>
-md	a molecular dynamics (MD) run (using frog instead of relax)
-mdfile file	commands for MD run are contained in this file (default: mdmaster).
-mdscript file	option to execute a shell script before the frog step
-keep	keep program output from all optimization steps
-help	shows a short description of the commands above

### 5.1.2 Output

There will be an output written to file job.start which informs you about the current options. The convergence is signalled by the file converged; otherwise, you should find the file not.converged within your working directory. If jobex finds a file named stop or STOP in the working directory, jobex will stop after the present step has terminated. You can create stop by the command touch stop.
The output of the last complete cycle is written to file job.last, while the output of the running cycle is collected within the file job.<cycle>, where <cycle> is the index of the cycle. The convergence criteria and their current values are written out at the bottom of the job.last file.

### 5.2 Program Statpt

### 5.2.1 General Information

Stationary points are places on the potential energy surface (PES) with a zero gradient, i.e. zero first derivatives of the energy with respect to atomic coordinates. Two types of stationary points are of special importance to chemists. These are minima (reactants, products, intermediates) and first-order saddle points (transition states).

The two types of stationary points can be characterized by the curvature of the PES at these points. At a minimum the Hessian matrix (second derivatives of energy with respect to atomic coordinates) is positive definite, that is the curvature is positive in all directions. If there is one, and only one, negative curvature, the stationary point is a transition state (TS). Because vibrational frequencies are basically the square roots of the curvatures, a minimum has all real frequencies, and a saddle point has one imaginary vibrational "frequency".
Structure optimizations are most effectively done by so-called quasi-Newton-Raphson methods. They require the exact gradient vector and an approximation to the Hessian matrix. The rate of convergence of the structure optimization depends on anharmonicity of the PES and of the quality of the approximation to the Hessian matrix.
The optimization procedure implemented in statpt belongs to the family of quasi-Newton-Raphsod methods [26]. It is based on the restricted second-order method, which employes Hessian shift parameter in order to control the step length and direction. This shift parameter is determined by the requirement that the step size should be equal to the actual value of the trust radius, tradius, and ensures that the shifted Hessian has the correct eigenvalue structure, all positive for a minimum search, and one negative eigenvalue for a TS search. For TS optimization there is another way of describing the same algorithm, namely as a minimization on the "image" potential. The latter is known as TRIM (Trust Radius Image Minimization) 27.

For TS optimizations the TRIM method implemented in statpt tries to maximize the energy along one of the Hessian eigenvectors, while minimizing it in all other directions. Thus, one "follows" one particular eigenvector, hereafter called the "transition" vector. After computing the Hessian for your guess structure you have to identify which vector to follow. For a good TS guess this is the eigenvector with negative eigenvalue, or imaginary frequency. A good comparison of different TS optimization methods is given in [28.
Structure optimizations using statpt are controlled by the keyword \$statpt to be present in the control file. It can be set either manually or by using the stp menu of define. The type of stationary point optimization depends on the value of itrvec specified as an option within \$statpt. By default itrvec is set to 0 , which implies a structure minimization. A value itrvec $>0$ implies a transition state optimization using the eigenvalue-following TRIM algorithm, where the index of the transition vector is specified by itrvec. Note, that statpt orders eigenvalues
(and eigenvectors) of the Hessian in ascending order, shifting six (or five in the case of linear molecules) zero translation and rotation eigenvalues to the end.
Note: this order differs from that used for vibrational frequencies in the control file, where rotational and translational eigenvalues are not shifted.

By default a structure optimization is converged when all of the following criteria are met:

- the energy change between two optimization cycles drops below the value given by threchange (default: $10^{-6}$ a.u.),
- the maximum displacement element drops below the value given by thrmax $\backslash$-displ (default: $10^{-3}$ a.u.),
- the maximum gradient element drops below the value given by thrmaxgrad (default: $10^{-3}$ a.u.),
- the root mean square of the displacement elements drops below the value given by thrrmsdispl (default: $5 \cdot 10^{-4}$ a.u.),
- the root mean square of the gradient elements drops below the value given by thrrmsgrad (defaul:t 5•10-4 a.u.).

The default values for the convergence criteria can be changed using the stp menu of define. The necessary keywords are described in Section 15.2 .15 below.

For structure optimization of minima with statpt as relaxation program just use:
jobex \&

TS optimizations are performed by the jobex invokation:
jobex -trans \&

### 5.2.2 Hessian matrix

The choice of the initial Hessian matrix has a great effect on the convergence of the structure optimization. At present, there are three choices for the Hessian matrix in statpt. For minimization, a diagonal matrix or approximate Hessian matrix from a forcefield calculation using uff(see Section 5.4) can be used. For transition state optimizations you have to provide either the "exact" Hessian or results from the lowest eigenvalue search (LES, see Section 11). Note also that you can calculate the Hessian with a smaller basis set and/or at a lower wavefunction level, and use it for higher level structure optimization. Usually, a Hessian matrix calculated in a minimal basis using RI-DFT is good enough for all methods implemented in TURBOMOLE.
statpt automatically takes the best choice of the Hessian from the control file. For minimizations it first looks for the exact Hessian and then for the UFF Hessian. If none of them is found it takes the scaled unit matrix. For transition state optimization the exact Hessian has a higher priority than the results of LES.
The results of LES can be used to obtain an initial Hessian matrix for transition state optimizations involving large molecules, where calculation of the full Hessian is too expensive. Note, that LES calculations for statpt, in addition to the \$les keyword require the following keywords to be added manually in the control file:

## \$hOhessian <br> \$nomw

The default Hessian update for minimization is bfgs, which is likely to remain positive definite. The powell update is the default for transition state optimizations, since the Hessian can develop a negative curvature as the search progresses.

### 5.2.3 Finding Minima

Simply specify the \$statpt keyword in the control file and run jobex as explained above. You can very often speedup the optimization by calculating the initial Hessian matrix using uff.

### 5.2.4 Finding transition states

Locating minima on a PES is straightforward. In contrast, transition state optimization requires much more input. The diagonal guess Hessian will almost never work, so you must provide a computed one. The Hessian should be computed at your best guess as to what the TS should be.
The real trick here is to find a good guess for the transition state structure. The closer you are, the better. It is often difficult to guess these structures. One way to obtain a good guess is to built an approximate TS and to perform a constrained minimization by freezing internal coordinates that change most during the reaction. Alternatively, you can generate several structures intermediate to reactants and products, and compute the energy at each point. The maximum energy structure is usually a good guess for the true TS.
After obtaining a reasonable initial guess for the TS structure you have to perform a vibrational analysis (or LES calculation for a large molecule) and to identify the index of the transition vector to follow during the optimization. Ideally, this is a vector with a negative eigenvalue, or "imaginary" frequency. The best way to find the right vector is to use some graphical interface to visualize vibrations. For a reasonable guess structure there should be one vibration that resembles the reaction under study. Remember that statpt uses a different ordering of eigenvalues as compared to the aoforce output - six (five) zero eigenvalues are shifted to the end.

There is an important thing to remember at this point. Even such sophisticated optimization methods like TRIM will not replace your own chemical intuition about where transition states may be located. If you need to restart your run, do so with the coordinates which have the smallest RMS gradient. Note that the energy does not have necessarily to decrease in a transition state search (as opposed to minimizations). It is sometimes necessary to do restart several times (including a recomputation of the Hessian) before the saddle point can be located.
Assuming you do find the TS, it is always a good idea to recompute the Hessian at this structure. It is fairly common, especially when using symmetry, that at your "TS" there is a second imaginary frequency. This means that you have not found the correct TS. The proper procedure is to distort the structure along the "extra" imaginary normal mode using the tool screwer (see Section 1.5). Very often such a distortion requires also lowering the point group symmetry. The distortion must be large enough, otherwise the next run will come back to the invalid structure.

### 5.3 Program Relax

### 5.3.1 Purpose

relax drives and controls a non-linear optimization procedure to locate the minimum (or a stationary point) of a function $f(x)$. In TURBOMOLE $f$ is always the electronic energy, and the coordinates $x$ will be referred to as general coordinates. They include

- cartesian atomic coordinates
- internal atomic coordinates
- exponents, contraction coefficients and scaling factors of basis functions
- a global scaling factor (a common scaling factor for all basis set exponents)

The optimization employs an iterative procedure based on gradients $\nabla f$ of the current and, if available, previous iterations. Various procedures can be applied: steepest descent, Pulay's DIIS, quasi-Newton, conjugate gradients, as well as combinations of them. relax carries out:

- update of general coordinates
- update of approximate hessians if needed
- conversion of coordinates (internal $\longleftrightarrow$ cartesian)

The mode of operation is chosen by the keywords \$optimize and \$interconversion and the corresponding options, which will be described in the following sections.

### 5.3.2 Optimization of General Coordinates

After gradients $G^{k}$ have been calculated for coordinates $q^{k}$ in optimization cycle $k$, new coordinates (or basis set exponents) $q^{k+1}$ can be obtained from the quasiNewton update:

$$
q^{k+1}=q^{k}-F^{k} G^{k}
$$

where $F^{k}$ is the inverse of an approximate force constant matrix $H^{k}$. This method would immediately converge to the equilibrium geometry if $F^{k}$ would be the inverse of the exact force constant matrix and the force field would be quadratic. In real applications usually none of these requirements is fulfilled. Often only a crude approximation to the force constant matrix $H^{k}$ is known. Sometimes a unit matrix is employed (which means coordinate update along the negative gradient with all coordinates treated on an equal footing).
The optimization of nuclear coordinates in the space of internal coordinates is the default task performed by relax and does not need to be enabled. Any other optimization task requires explicit specifications in data group \$optimize, which takes several possible options:
\$optimize options

```
internal on/off Structure optimization in internal coordinates.
redundant on/off Structure optimization in redundant coordinates.
cartesian on/off Structure optimization in cartesian coordinates.
basis on/off Optimization of basis set exponents, contraction coefficients,
 scaling factors.
global on/off Optimization of global scaling factor for all basis set expo-
 nents.
```

Note: All options except internal are switched off by default, unless they have been activated explicitly by specifying on.
Some of the options may be used simultaneously, e.g.

- internal, basis
- internal, global
- cartesian, basis

Other options have to be used exclusively, e.g.

- internal, cartesian
- basis, global

The update of the coordinates may be controlled by special options provided in data group \$coordinateupdate which takes as options:

```
dqmax=real Maximum total coordinate change (default: 0.3).
interpolate on/off Calculate coordinate update by inter/extrapolation us- ing coordinates and gradients of the last two optimization cycles (default: interpolate on) if possible.
statistics integer/off Display optimization statistics for the integer previous optimization cycles. Without integer all available information will be displayed. off suppresses optimization statistics.
```

The following data blocks are used by program relax:

1. Input data from gradient programs grad, rdgrad, egrad, rimp2, mpgrad, etc.:
\$grad cartesian atomic coordinates and their gradients.
\$egrad exponents and scale factors and their gradients.
\$globgrad global scale factor and its gradient.
2. Input data from force constant program aoforce:
\$grad cartesian atomic coordinates and their gradients.
\$globgrad global scale factor and its gradient.
\$hessian the force constant matrix in the space of cartesian coordinates.
3. Output data from program relax:
\$coord cartesian atomic coordinates.
\$basis exponents and scale factors.
\$global global scale factor.
For structure optimizations the use of (redundant) internal coordinates is recommended, see Section 4.0.6. Normally internal coordinates are not used for input or output by the electronic structure programs (dscf, mpgrad, etc.). Instead the coordinates, gradients, etc. are automatically converted to internal coordinates by relax on input and the updated positions of the nuclei are written in cartesians coordinates to the data group \$coord. Details are explained in the following sections.

### 5.3.3 Force Constant Update Algorithms

In a Newton-type geometry update procedure often only a crude approximation to the force constant matrix $H^{k}$ is available. What can be done then is to update $F^{k}=\left(H^{k}\right)^{-1}$ in each iteration using information about previous coordinates and gradients. This constitutes the quasi-Newton or variable metric methods of which there are a few variants:

1. Murtagh/Sargent (MS):

$$
F^{k}=F^{k-1}+\frac{Z^{k-1}\left(Z^{k-1}\right)^{\dagger}}{\left(Z^{k-1}\right)^{\dagger} d G^{k-1}}
$$

2. Broyden/Fletcher/Goldfarb/Shanno (BFGS):

$$
F^{k}=F^{k-1}+\frac{S\left(d q^{k-1}\right)^{\dagger} d q^{k-1}-d q^{k-1}\left(d G^{k-1}\right)^{\dagger} F^{k-1}-F^{k-1} d G^{k-1}\left(d q^{k-1}\right)^{\dagger}}{S 1}
$$

3. Davidon/Fletcher/Powell (DFP):

$$
F^{k}=F^{k-1}+\frac{\left(d q^{k-1}\right)^{\dagger} d q^{k-1}}{S 1}-\frac{F^{k-1} d G^{k-1}\left(d G^{k-1}\right)^{\dagger} F^{k-1}}{(S-1) S 1}
$$

4. combined method (BFGS/DFP): If $S 1<(S-1) S 1$ and $S 1>0$ perform DFP update, otherwise BFGS.

The meaning of the symbols above is as follows:
$F^{k}=\left(H^{k}\right)^{-1} \quad$ approximate inverse force constant matrix in the k-th iteration.s
$q^{k} \quad$ general coordinates in the k-th iteration.
$G^{k} \quad$ gradients in the k-th iteration.
$d q^{k-1}=q^{k}-q^{k-1}$
$d g^{k-1}=g^{k}-g^{k-1}$
$Z^{k-1}=d q^{k-1}-F^{k-1} d G^{k-1}$
$S 1=\left(d q^{k-1}\right)^{\dagger} d g^{k-1}$
$S=1+\left(\left(d g^{k-1}\right)^{\dagger} F^{k-1} d G^{k-1}\right) /(S 1)$
An alternative is to use update algorithms for the hessian $H^{k}$ itself:
Ehrig, Ahlrichs : Diagonal update for the hessian by means of a least squares fit

$$
H_{i i}^{k}=\sqrt{H_{i i}^{k-1}\left(h_{i}+d_{i}\right)}
$$

with the new estimate $h$ for the diagonal elements obtained by

$$
h_{i}=\frac{\sum_{k} d G_{i}^{k} d q_{i}^{k}}{\sum_{k}\left(d q_{i}^{k}\right)^{2}}
$$

and the error $d$ obtained by the regression

$$
d_{i}=\frac{\sqrt{\frac{\sum_{k}\left(d g_{i}^{k}\right)^{2}}{\sum_{k}\left(d d_{i}^{k}\right)^{2}}-h_{i}^{2}}}{k-2} .
$$

Another alternative is to use DIIS-like methods: structure optimization by direct inversion in the iterative subspace. (See ref. $[29]$ for the description of the algorithm). The DIIS procedure can often be applied with good success, using static or updated force constant matrices.
Any of the algorithms mentioned above may be chosen. Recommended is the macro option ahlrichs, which leads to the following actions ( $n$ is the maximum number of structures to be included for the update, default is $n=4$ ):
ncycles $<n$ : geometry update by inter/extrapolation using the last 2 geometries.
ncycles $\geq n$ : diagonal update for the hessian as described above; DIIS-like update for the geometry.
$\|G\|<$ thr: BFGS-type update of the hessian and quasi-Newton update of (generalized) coordinates.

References for the algorithms mentioned above: 30, 26, 31, 29, 32, 33

### 5.3.4 Definition of Internal Coordinates

If structure optimizations are to be performed in the space of internal coordinates (\$optimize internal, is the default setting), appropriate internal coordinate definitions have to be provided on data block \$intdef. The types available and their definitions are described in Section 4.1.2. For recommendations about the choice of internal coordinates consult ref. 20]. Nevertheless the structure of $\$$ intdef will shortly be described. The syntax is (in free format):

```
1 k 1.00000000 bend 1 2 3 val=1.9500 fdiag=.6666
```

The first items have been explained in Chapter 4
Two additional items val=real, fdiag=real may be supplied for special purposes:
val $=\quad$ serves for the input of values for internal coordinates for the interconversion internal $\rightarrow$ cartesian coordinates; it will be read in by relax if the flag for interconversion of coordinates has been activated (\$interconversion on ), or by the interactive input program define within the geometry specification menu.
fdiag $=\quad$ serves for the input of (diagonal) force constants for the individual internal coordinates to initialize \$forceapprox.

### 5.3.5 Structure Optimizations Using Internal Coordinates

This is the default task of relax (\$optimize internal on does not need to be specified!) You need as input the data groups :
\$grad cartesian coordinates and gradients as provided and accumulated in subsequent optimization cycles by the programs grad, or rdgrad etc.
\$intdef definitions of internal coordinates.
\$redundant definitions of redundant coordinates.
Output will be the updated coordinates on \$coord and the updated force constant matrix on $\$$ forceapprox. If any non-default force constant update option has been chosen, relax increments its counting variables <numgeo>, <numpul> within command keyword $\$$ forceupdate. If the approximate force constant has been initialized (\$forceinit on ) relax switches the initialization flag to \$forceinit off. Refer also to the general documentation of TURBOMOLE. It is recommended to check correctness of your definition of internal coordinates:

1. Calculate their values for your cartesian start coordinates using the relax program (see Section 5.3.11) or within a define session.
2. Have a look at the eigenvectors of the $\mathbf{B m B}^{\dagger}$-matrix. Set some '?' behind keyword \$intdef, if there are any eigenvalues close to zero $\left(<10^{-2}\right.$ is to be considered bad for small molecules, but there is no general rule) check those internal coordinates for consistency which contribute to the corresponding eigenvector(s)!

### 5.3.6 Structure Optimization in Cartesian Coordinates

For this task you have to specify:

```
$optimize
 cartesian on
 internal off
```

These lines switch on the non-default optimization in cartesian coordinates and switch off the optimization in internal coordinates (this has to be done explicitly!). As input data groups you need only $\$$ grad as provided by on of the gradient programs. For the first coordinate update an approximate force constant matrix is needed in data group \$forceapprox. Output will be the updated coordinates on \$coord, and the updated force constant matrix on \$forceapprox.
The coordinates for any single atom can be fixed by placing an ' f ' in the third to eighth column of the chemical symbol/flag group. As an example, the following coordinates specify acetone with a fixed carbonyl group:
\$coord
$\begin{array}{rrrll}2.02693271108611 & 2.03672551266230 & 0.00000000000000 & \text { c } & \\ 1.08247228252865 & -0.68857387733323 & 0.00000000000000 & \text { cf } & \\ 2.53154870318830 & -2.48171472134488 & 0.00000000000000 & \text { o } & \text { f }\end{array}$

-1.78063790034738	-1.04586399389434	0.00000000000000	c
-2.64348282517094	-0.13141435997713	1.68855816889786	h
-2.23779643042546	-3.09026673535431	0.0000000000000	h
-2.64348282517094	-0.13141435997713	-1.68855816889786	h
1.31008893646566	3.07002878668872	1.68840815751978	h
1.31008893646566	3.07002878668872	-1.68840815751978	h
4.12184425921830	2.06288409251899	0.00000000000000	h
\$end			

### 5.3.7 Optimization of Basis Sets (SCF only)

For this task you have to specify:

```
$optimize
 basis on
 internal off
```

This example would perform only a basis set optimization without accompanying geometry optimization. It is possible, of course, to optimize both simultaneously: Just leave out the last line of the example (internal off). Input data groups are:
\$egrad Basis set exponents, contraction coefficients, scaling factors and their respective gradients as provided and accumulated in subsequent optimization cycles by one of the programs grad or mpgrad, if \$drvopt basis on has been set.
\$basis Description of basis sets used, see Section 4.2.
Output will be the updated basis on \$basis, and the updated force constant matrix on \$forceapprox.
For an example, see Section 16.5.

### 5.3.8 Simultaneous Optimization of Basis Set and Structure

The optimization of geometry and basis set may be performed simultaneously and requires the specification of:

```
$optimize
 internal on (or: cartesian on)
 basis on
```

and needs as input data groups $\$$ grad and $\$$ egrad. Output will be on $\$$ coord, \$basis, also on \$forceapprox (updated).

### 5.3.9 Optimization of Structure and a Global Scaling Factor

Optimization of a global scaling factor is usually not performed in geometry optimizations. It is a special feature for special applications by even more special users. As reference see 34$]$.

To optimize the structure and a global scaling factor specify:

```
$optimize
 internal on (or: cartesian on)
 global on
```

You need as input data groups $\$$ grad and $\$$ globgrad, the latter contains the global scaling factors and their gradients accumulated in all optimization cycles. Output will be on $\$$ coord, $\$$ global, also on \$forceapprox (updated). Note that for optimization of a global scaling factor a larger initial force constant element is recommended (about 10.0).

### 5.3.10 Conversion from Internal to Cartesian Coordinates

Due to translational and rotational degrees of freedom and the non-linear dependence of internal coordinates upon cartesian coordinates, there is no unique set of cartesian coordinates for a given set of internal coordinates. Therefore an iterative procedure is employed to calculate the next local solution for a given cartesian start coordinates. This task may be performed using the relax program, but it is much easier done within a define session.

### 5.3.11 Conversion of Cartesian Coordinates, Gradients and Force Constants to Internals

To perform this tasks, you have to activate the interconversion mode by

```
$interconversion on
 cartesian --> internal coordinate gradient hessian
```

Note that any combination of the three options showed is allowed! The default value is coordinate, the two other have to be switched on explicitly if desired.
You need as input data groups:
intdef Definitions of (redundant) internal coordinates
coord Cartesian coordinates (for option 'coordinate')
grad Cartesian coordinates and gradients as provided and accumulated in subsequent optimization cycles by the various gradient programs (for coordinate and gradient)
hessian Analytical force constant matrix (as provided by the force constant program aoforce) (only if option hessian is specified). The data group \$hessian (projected) may be used alternatively for this purpose.

All output will be written to the screen except for option hessian (output to data group \$forceapprox)

### 5.3.12 The m-Matrix

The m-matrix serves to fix position and orientation of your molecule during geometry optimizations. It cannot be used to fix internal coordinates! The m-matrix is a diagonal matrix of dimension $3 n^{2}$ (where $n$ is the number of atoms). Normally m will be initialized as a unit matrix by relax. As an example consider you want to restrict an atom to the xy-plane. You then set the $\mathrm{m}(\mathrm{z})$-matrix element for this atom to zero. You can use at most six zero m-matrix diagonals (for linear molecules only five) - corresponding to translational and rotational degrees of freedom. Note that the condition of the $\mathbf{B m B}{ }^{\dagger}$-matrix can get worse if positional restrictions are applied to the m-matrix. m-matrix elements violating the molecular point group symmetry will be reset to one. Non-default settings for m-matrix diagonals of selected atoms have to be specified within data group \$m-matrix as:

```
$m-matrix
 1
 10}101.0 0.0 0.
 11 1.0 1.0 0.0
```


### 5.3.13 Initialization of Force Constant Matrices

The most simple initial hessian is a unit matrix. However, better choices are preferable. For structure optimizations using internal coordinates you may use structural information to set up a diagonal force constant matrix with elements chosen in accord to the softness or stiffness of the individual modes. For detailed information refer to ref. [32]. For optimization of basis set parameters less information is available. When neither data block \$forceapprox is available nor \$forceinit on is set, the force constant matrix will be initialized as a unit matrix. Specifying the force constant initialization key \$forceinit on diag=... will lead to:
diag=real Initialization with real as diagonal elements.
diag=default Initial force constant diagonals will be assigned the following default values:

internal coordinates	$:$	stretches	0.50
		angles	0.20
scaling factors	$:$	$\mathrm{s}, \mathrm{p}$	1.50
		d	3.00
exponents	uncontracted	0.15	
		contracted	10.00
contraction coefficients	$:$		100.00
global scaling factor	$:$	15.00	
cartesian force constants	$:$	0.50	

diag=individual Initial force constant diagonals will be taken from

```
$intdef fdiag=... or
$global fdiag=...
```

Similar initialization modes are NOT supported for geometry optimization in cartesian space and for the optimization of basis set parameters!
carthess Data group \$hessian (projected) is used.

### 5.3.14 Look at Results

The energy file includes the total energy of all cycles of a structure optimization completed so far. To get a display of energies and gradients use the UNIX command grep cycle gradient which yields, e.g. $\mathrm{H}_{2} \mathrm{O}$.

```
cycle = 1 SCF energy = -76.3432480651 |dE/dxyz| = 0.124274
cycle = 2 SCF energy = -76.3575482860 |dE/dxyz| = 0.082663
cycle = 3 SCF energy = -76.3626983371 | |E/dxyz| = 0.033998
cycle = 4 SCF energy = -76.3633251080 | |E/dxyz| = 0.016404
cycle = 5 SCF energy = -76.3634291559 | dE/dxyz | = 0.010640
cycle = 6 SCF energy = -76.3634910117 |dE/dxyz| = 0.000730
```

This should be self-evident. To see the current-or, if the optimization is converged, the final-atomic distances use the tool dist. Bond angles, torsional angles etc. are obtained with the tools bend, tors, outp, etc. In the file gradient are the collected cartesian coordinates and corresponding gradients of all cycles. The values of the general coordinates and corresponding gradients are an output of relax written to job.<cycle> of job.last within jobex. To look at this search for 'Optimization statistics' in job.last or job.<cycle>.

### 5.4 Force Field Calculations

### 5.4.1 Purpose

uff preoptimizes a structure and calculates an analytical Hessian which can be used as a start Hessian in a geometry optimization. This will accelerate the convergence
of an optimizations. For optimizations in cartesian space this will be faster by a factor of two for any molecule.

### 5.4.2 How to Perform a Uff Calculation

You have to generate cartesian coordinates (file coord), nothing else. You can start an single-point calculation calculation by typing

## $u f f$

To start an uff geometry optimization, one has to change the number of cycles (parameter maxcycle) in the block \$uff in the file control. The ouput is the optimized structure (file coord), the analytical gradient (file uffgradient) and the analytical cartesian hessian (file uffhessian0-0). Furthermore the control file will be modified:

```
$forceinit on
 carthess
$uffhessian file=uffhesian0-0
```

These commands have the effect to inititialize the force constant matric for a geometry optimization with the hessian one.
In some cases uff cannot recognize the connectivity, then one can specify the connectivity in the file ufftopology. The program will calculate the bond, angle, torsion, inverison and non-bonded terms (force field terms) based on the connectivity specified in the topology file.

### 5.4.3 The UfF implementation

The uff implementation follows the paper by Rappé 7 . The energy expression in uff is as follows:

$$
\begin{align*}
& \mathrm{E}_{U F F}=\sum^{N_{B}} \frac{1}{2} \cdot K_{I J} \cdot\left(r-r_{I J}\right)^{2} \tag{5.1}
\end{align*}
$$

$$
\begin{aligned}
& +\sum^{N_{T}} \frac{1}{2} \cdot V_{\phi} \cdot\left(1-\cos \left(n \phi_{0}\right) \cos (n \phi)\right) \\
& +\sum^{N_{I}} V_{\omega} \cdot\left(C_{0}^{I}+C_{1}^{I} \cos \omega+C_{2}^{I} \cos 2 \omega\right) \\
& +\sum^{N_{n b}} D_{I J} \cdot\left(-2\left(\frac{x_{I J}}{x}\right)^{6}+\left(\frac{x_{I J}}{x}\right)^{12}\right) \\
& +\sum^{N_{n b}} \frac{q_{I} \cdot q_{J}}{\epsilon \cdot x}
\end{aligned}
$$

The Fourier coefficients $C_{0}^{A}, C_{1}^{A}, C_{2}^{A}$ of the general angle terms are evaluated as a function of the natural angle $\theta_{0}$ :

$$
\begin{align*}
C_{2}^{A} & =\frac{1}{4 \sin ^{2} \theta_{0}}  \tag{5.2}\\
C_{1}^{A} & =-4 \cdot C_{2}^{A} \cos \theta_{0}  \tag{5.3}\\
C_{0}^{A} & =C_{2}^{A}\left(2 \cos ^{2} \theta_{0}+1\right) \tag{5.4}
\end{align*}
$$

The expressions in the engery term are:

$N_{B}, N_{A}, N_{T}, N_{I}, N_{n b}$	the numbers of the bond-, angle-, torsion-, inversion- and   the non bonded-terms.
$K_{I J}, K_{I J K}$	forceconstants of the bond- and angle-terms.   $r, r_{I J}$
bond distance and natural bond distance of the two atoms   $I$ and $J$.	
$C_{0}^{A}, C_{1}^{A}, C_{2}^{A}$	angle and natural angle for three atoms $I-J-K$.   $\phi, \phi_{0}$
Fourier coefficients of the general angle terms.	
$V_{\phi}$	torsion angle and natural torison angle of the atoms $I-J-$   $K-L$.
$n$	height of the torsion barrier.
$\omega$	periodicity of the torsion potential.
	inversion- or out-of-plane-angle at atom $I$.


$V_{\omega}$	height of the inversion barrier.
$C_{0}^{I}, C_{1}^{I}, C_{2}^{I}$	Fourier coefficients of the inversions terms.
$x, x_{I J}$	distance and natural distance of two non bonded atoms $I$   and $J$.
$D_{I J}$	depth of the Lennard-Jones potential.
$q_{I}, \epsilon$	partial charge of atoms $I$ and dielectric constant.

One major difference in this implementation concerns the atom types. The atom types in Rappé's paper have an underscore " _". In the present implementation an $\mathrm{sp}^{3} \mathrm{C}$ atom has the name "C 3 " instead of "C_3". Particularly the bond terms are described with the harmonic potential and the non-bonded van der Waals terms with the Lennard-Jones potential. The partial charges needed for electrostatic nonbond terms are calculated with the Charge Equilibration Modell (QEq) from Rappé 35. There is no cutoff for the non-bonded terms.

The relaxation procedure distinguishes between molecules wih more than 90 atoms and molecules with less atoms. For small molecules it consists of a Newton step followed by a linesearch step. For big molecules a quasi-Newton relaxation is done. The BFGS update of the force-constant matric is done [36, 37, 30, 38]. Pulay's DIIS procedure is implemented for big molecule to accelarate the optimization [39, 29].
The coordinates for any single atom can be fixed by placing an 'f' in the third to eighth column of the chemical symbol/flag group. As an example, the following coordinates specify acetone with a fixed carbonyl group:

```
$coord
 2.02693271108611 2.03672551266230 0.00000000000000 c
 1.08247228252865 -0.68857387733323 0.00000000000000 c f
 2.53154870318830 -2.48171472134488 0.00000000000000 0
 -1.78063790034738 -1.04586399389434 0.00000000000000 c
 -2.64348282517094 -0.13141435997713 1.68855816889786 h
 -2.23779643042546 -3.09026673535431 0.00000000000000 h
 -2.64348282517094 -0.13141435997713 -1.68855816889786 h
 1.31008893646566 3.07002878668872 1.68840815751978 h
 1.31008893646566 3.07002878668872 -1.68840815751978 h
 4.12184425921830 2.06288409251899 0.00000000000000 h
$end
```


### 5.5 Molecular Dynamics Calculations

$A b$ initio molecular dynamics (MD) can be carried out on the ground state BornOppenheimer potential hypersurface. At the start of an MD run the user must specify the initial atomic positions and velocities and give some general instructions
for the run. This is managed by running the interactive program Mdprep and generating the command file mdmaster. If this is successful, the MD run itself may be started: jobex -md. Time is then advanced in steps. The electronic potential energy and its gradients are calculated quantum mechanically at the required coordinates each timestep (as detailed above, e.g. dscf and grad). The MD program frog uses the Leapfrog Verlet algorithm [40] to turn the gradients into new atomic positions and velocities. The atoms thus undergo classical Newtonian dynamics on the $a b$ initio potential hypersurface. Trajectory information is recorded in a log file (mdlog). It is possible to instruct frog to heat or cool the system, use a thermostat for canonical dynamics, conserve total energy or read in new positions or velocities: the appropriate keywords are described in Section 15.2 .18 below.

### 5.6 Counterpoise-Corrections using the Jobbsse Script

The shell script jobbsse controls and executes the automatic calculation of the counterpoise correction as it has been formulated by Boys and Bernadi (S. F. Boys and F. Bernardi, Mol. Phys., 19, 553 (1970)) to estimate the Basis Set Superposition Error (BSSE). For a dimer, the cp-correction takes the form for the monomers A and B :

$$
E_{A B}^{C P}=E_{A B}-\left(E_{A(B)}-E_{A}\right)-\left(E_{B(A)}-E_{B}\right)
$$

Where parentheses denote ghost basis sets without electrons or nuclear charges. For a timer jobbsse used by default the conventional so-called site-site functional counterpoise corrections:

$$
E_{A B C}^{C P}=E_{A B C}-\left(E_{A(B C)}-E_{A}\right)-\left(E_{B(A C)}-E_{B}\right)-\left(E_{C(A B)}-E_{C}\right) .
$$

jobbsse works similar as the jobex script: it cycles through the SCF/DFT and, if needed, gradient and force relaxation programs and stops if either the maximum number of cycles is reached or the convergence criteria (change in the total energy, maximum norm of the gradient) are fulfilled. It does either only energy calculations or a full geometry optimization including up to three fragments. By default, the executable programs are taken from the load modules library within the TURBOMOLE directory.
Note that you need to set up the fragments (and possibly their symmetries using define in the geometry menu beforehand. The general structure of a jobbsse calculation is as follows:

1. bsseenergy is invoked to generate input files for define, which is then used to prepare the control files (including occupation numbers, initial guess MOs, etc.) for the different "ghost" and monomer calculations and shell scripts with commands for calculations on these fragments.
2. jobbsse cycles over the supermolecular complex and the fragments and computes the energies and, if requested, gradients for them. Then the counterpoisecorrected results are evaluated and written to the standard data groups (\$energy and $\$ \mathrm{grad}$ ).
3. For geometry optimizations one of the structure relaxation codes (statpt or relax) is invoked to update the coordinates and check for convergence. If the structure optimization is not converged jobbsse continues with the previous step.

Note, that counterpoise-corrected calculations with jobbsse are NOT as black-box as ordinary geometry optimizations with jobex. The input generated for the fragments are based on the default occupation numbers obtained from the EHT guess, default assignments for the frozen orbitals, memory, etc. Since this might be different from what is needed (or even fail), it is recommended to let jobbsse stop after the initial setup step using the flag -setup and to check carefully the assigned basis
sets, occupations number and subsystem symmetries. In particular, for MP2 or CC2 calculations with molecules containing not only the atoms $\mathrm{H}-\mathrm{Ar}$ also the number of frozen orbitals should be checked, and if neccessary corrected.

### 5.6.1 Options

Given a shell the usage is:

```
nohup jobbsse &
```

This command invokes cp-correction, and, if needed structure optimization using the default program statpt. Note, that the program needs to know which calculation is being done. Structure optimizations using program relax can be performed using -relax flag:

```
nohup jobbsse -opt -relax \&
```

nohup means that the command is immune to hangups, logouts, and quits. \& runs a background command. jobbsse accepts the following arguments controlling the level of calculation, convergence criteria and many more (for example nohup jobex -gcart 4 \&):

-energy integer	converge total energy up to   $10^{(- \text {integer >) }}$ Hartree (default: 6)
-gcart integer	converge maximum norm of cartesian gradient up to   $10^{(- \text {-integer>) }}$ atomic units (default: 3)
-c integer	perform up to integer cycles (default: 100)   -gradient   calculate the gradient as well
-opt	optimise the structure
-relax	use the relax program for force relaxation
-level level	define the optimization level, level=scf, dft, mp2, or cc2   (default is scf). Note that the program needs this input! If   the level is DFT, the grid will be automatically set to m4.
-ri	use RI modules ridft and rdgrad (fast Coulomb approxi-   mation) instead of dscf and grad as well as rimp2 instead   of mpgrad
-l <path>	employ programs from directory <path>
-mem integer	Is able to control the memory from outside define Note   that if you did not define any memory, it is automatically   set to 1 GB


-trimer	calculates, in case we have a trimer:   Energy $=A B C-A B(C)+A B-A C(B)+A C-B C(A)+$   BC   rather than   Energy $=A B C-A(B C)+A-B(A C)+B-C(A B)+C$   (note that the first term neglects the BSSE in the dimer)
-setup	Interrupt calculation after the initial setup step to check   and possibly correct the control files for the fragments and   the supermolecule. To continue, start jobbsse without the   -setup option.
-help	shows a short description of the commands above

### 5.6.2 Output

There will be an output written to file bsse_out. In this file, you will find all individual energies computed which were used to calculate the last cp-corrected energy. The same holds true for the last gradients, which are written to grad_out.

The convergence criteria and their current values are written out at the not. converged file. For the possible options to control convergence check the subsection for the optimization program used (statpt, which is used by default, or relax). Since for weak complexes the force constants for intra- and intermolecular bonds very strongly in magnitude, it is recommended to use whenever possible redundant internal coordinates.

## Chapter 6

## Hartree-Fock and DFT Calculations

Energy and gradient calculations at the Hartree-Fock (HF) and DFT level can be carried out in two ways: dscf and grad perform conventional calculations based on four-center two-electron repulsion integrals (ERI's); ridft and rdgrad employ the RI- $J$ approximation, as detailed below.
dscf and grad are modules for energy and gradient calculations at the HF and DFT level, which use an efficient semi-direct SCF algorithm. Calculation of the Coulomb and HF exchange terms is based on the conventional method employing four-center two-electron repulsion integrals (ERI's). These modules should be used for HF and DFT calculations with exchange-correlation functionals including HF exchange contribution, e.g. B3-LYP, if further approximations (RI-J) are to be avoided. All functionalities are implemented for closed-shell RHF and open-shell UHF reference wavefunctions. Restricted open shell treatments (ROHF) are supported on the HF level only, i. e. not for DFT.

The most important special features of the dscf and grad modules are:

- Selective storage of the most time consuming and frequently used integrals. The integral storage is controlled by two threshold parameters, \$thize and \$thime, related to integral size and computational cost.
- Efficient convergence acceleration techniques for energy calculations. They include standard methods for convergence acceleration (DIIS), which reduce the number of SCF iterations needed as well as methods to reduce the effort within each iteration when the calculation is almost converged (integral prescreening and differential density scheme).
ridft and rdgrad are modules for very efficient calculation of energy and gradient at the Hartree-Fock (HF) and DFT level [41]. Both programs employ the Resolution of the Identity approach for computing the electronic Coulomb interaction (RI-J). This approach expands the molecular electron density in a set of atom-centered auxiliary functions, leading to expressions involving three-center ERI's only. This
usually leads to a more than tenfold speedup for non-hybrid DFT compared to the conventional method based on four-center ERI's (for example the dscf or grad module).

The combination of RI- $J$ for Coulomb-interactions with a case-adapted conventional exchange treatment reduces the scaling behaviour of the (conventional) exchange evaluation required in HF-SCF and hybrid DFT treatments. Usage of ridft and rdgrad for HF and hybrid DFT is of advantage (as compared to dscf and grad) for larger systems, where it reduces computational costs significantly.
The most important special features of the ridft and rdgrad modules are:

- A very efficient semi-core algorithm for energy calculation. The most expensive three-center integrals are kept in memory which significantly reduces the computational time for small and middle sized molecules. The amount of stored integrals is controlled by simply specifying the amount of free memory using the keyword \$ricore.
- Multipole accelerated RI for Coulomb (MARI- $J$ ) linear scaling $(O(N))$ method for large molecules. It significantly reduces calculation times for molecules with more than 1000 basis functions.

All algorithms implemented in dscf, grad, ridft, and rdgrad modules can exploit molecular symmetry for all finite point groups. Typically, the CPU time is proportional to $1 / N_{G}$, where $N_{G}$ is the order of the nuclear exchange group. Another important feature is a parallel implementation using the MPI interface.
Additionally dscf and ridft modules include the following common features:

- An UHF implementation [42 with automatic generation of optimal start vectors by solving the HF instability equations [43] in the AO basis (see the keyword \$scfinstab for detailed information).
- Occupation number optimization using (pseudo-Fermi) thermal smearing.

RI-techniques can also be used for the Hartree-Fock exchange part of the Fock matrix (RI-HF). This is done by the ridft-module, if the keyword \$rik is found in the control file. In this case ridft performs a Hartree-Fock-SCF calculation using the RI- approximation for both $J$ and $K$, if suitable auxiliary basis sets (which differ from that used for fitting of the Coulomb part only) are specified. This is efficient only for comparably large basis sets like TZVPP, cc-pVTZ and larger.

## Prerequisites

Both dscf and ridft require the control file and starting orbitals obtained from the extended Hückel guess using define.
Energy calculations using dscf can be performed in a direct or semi-direct mode. In the direct mode all four-center ERI's are recalculated at each SCF iteration. The
semi-direct mode uses a selective storage of the most time consuming and frequently used integrals. The amount of integrals stored is controlled by the keywords $\$$ thize and $\$$ thime, related to integral size and computational cost. The semi-direct mode requires a separate dscf statistics run to estimate the disk space needed for integral storage. The statistics run requires the keyword \$statistics dscf to be present in the control file. It can be set either manually or using the tool Stati.
For ridft and rdgrad following additional prerequisites are required:

1. An auxiliary basis defined in the data group $\$ j$ bas. This group is created automatically when using ri menu of define.
2. The maximum core memory the program is allowed to allocate should be defined in the data group \$ricore; the recommended value is $75-85 \%$ of the available (physical) core memory.
3. Calculations using MARI- $J$ method require the keyword \$marij.
4. For RI-HF-calculations auxiliary bases defined in the data group \$jkbas are needed. This group is created by the rijk menu in define.

## How to Perform a Calculation

Single point calculations
Call the dscf or ridft program after running define.
Geometry optimizations and molecular dynamics
For HF or DFT calculations using dscf and grad simply invoke jobex.
For DFT calculations using ridft and rdgrad type jobex -ri; see Section 5.1 for additional options and parameters for geometry optimizations and ab initio molecular dynamics calculations.

### 6.1 Background Theory

In Hartree-Fock theory, the energy has the form,

$$
\begin{equation*}
E_{H F}=h+J-K+V_{n u c}, \tag{6.1}
\end{equation*}
$$

where $h$ is the one-electron (kinetic plus potential) energy, $J$ is the classical Coulomb repulsion of the electrons, $K$ is the exchange energy resulting from the quantum (fermion) nature of electrons, and $V_{\text {nuc }}$ is the nuclear repulsion energy.
In density functional theory, the exact Hartree-Fock exchange for a single determinant is replaced by a more general expression, the exchange-correlation functional, which can include terms accounting for both exchange energy and the electron correlation which is omitted from Hartree-Fock theory. The DFT energy is expressed as a functional of the molecular electron density $\rho(\mathbf{r})$,

$$
\begin{equation*}
E_{D F T}[\rho]=T[\rho]+V_{n e}[\rho]+J[\rho]+E_{x}[\rho]+E_{c}[\rho]+V_{n u c}, \tag{6.2}
\end{equation*}
$$

where $T[\rho]$ is the kinetic energy, $V_{n e}[\rho]$ is the nuclei-electron interaction, $E_{x}[\rho]$ and $E_{c}[\rho]$ are the exchange and correlation energy functionals.
The exchange and correlation functionals normally used in DFT are integrals of some function of the density and possibly the density gradient. In addition to pure DFT methods, dscf and grad modules support hybrid functionals in which the exchange functional includes the Hartree-Fock exchange, e.g. B3-LYP.

### 6.2 Exchange-Correlation Functionals Available

The following exchange-correlation functionals are available:

- LDAs: S-VWN, PWLDA
- GGAs: B-VWN, B-LYP, B-P, PBE
- MGGA: TPSS
- hybrid functionals: BH-LYP, B3-LYP, PBE0, TPSSh
- double-hybrid functional: B2-PLYP (energy calculations only!)

In detail, the functional library consists of:

- The Slater-Dirac exchange functional only (S) 44, 45.
- The 1980 correlation functional (functional V in the paper) of Vosko, Wilk, and Nusair only (VWN) 46.
- A combination of the Slater-Dirac exchange and Vosko, Wilk, and Nusair 1980 (functional V) correlation functionals (S-VWN) 44, 45, 46.
- The S-VWN functional with VWN functional III in the paper. This is the same functional form as available in the Gaussian program [44, 45, 46].
- A combination of the Slater-Dirac exchange and Perdew-Wang (1992) correlation functionals 44, 45, 47.
- A combination of the Slater-Dirac exchange and Becke's 1988 exchange functionals (B88) [44, 45,48.
- Lee, Yang, and Parr's correlation functional (LYP) 49].
- The B-LYP exchange-correlation functional (B88 exchange and LYP correlation functionals) 44, 45, 48, 49].
- The B-VWN exchange-correlation functional (B88 exchange and VWN (V) correlation functionals) 44, 45, 48, 46.
- The B-P86 exchange-correlation functional (B88 exchange, VWN(V) and Perdew's 1986 correlation functionals) [44, 45, 48, 46, 50].
- The Perdew, Burke, and Ernzerhof (PBE) exchange-correlation functional 44 , 45, 47, 51 .
- The Tao, Perdew, Staroverov, and Scuseria functional (Slater-Dirac, TPSS exchange and Perdew-Wang (1992) and TPSS correlation functionals) 44, 45 , 47,52.

Additionally, for all four modules (dscf, grad, ridft, and rdgrad) following hybrid functionals are available (a mixture of Hartree-Fock exchange with DFT exchangecorrelation functionals):

- The BH-LYP exchange-correlation functional (Becke's half-and-half exchange in a combination with the LYP correlation functional) [44, 45, 48, 49, 53].
- The B3-LYP exchange-correlation functional (Becke's three-parameter functional) with the form,

$$
\begin{equation*}
0.8 S+0.72 B 88+0.2 H F+0.19 V W N(V)+0.81 L Y P \tag{6.3}
\end{equation*}
$$

where HF denotes the Hartree-Fock exchange $44,45,48,49,54$.

- The B3-LYP exchange-correlation functional with VWN functional V in the paper. This is the same functional form as available in the Gaussian program.
- The 1996 hybrid functional of Perdew, Burke, and Ernzerhof, with the form,

$$
\begin{equation*}
0.75(S+P B E(X))+0.25 H F+P W+P B E(C) \tag{6.4}
\end{equation*}
$$

where $\operatorname{PBE}(\mathrm{X})$ and $\operatorname{PBE}(\mathrm{C})$ are the Perdew-Burke-Ernzerhof exchange and correlation functionals and PW is the Perdew-Wang correlation functional [44, 45, 47, 51, 55).

- The TPSSH exchange-correlation functional of Staroverov, Scuseria, Tao and Perdew with the form,

$$
\begin{equation*}
0.9(S+T P S S(X))+0.1 H F+P W+T P S S(C) \tag{6.5}
\end{equation*}
$$

where HF denotes the Hartree-Fock exchange [44, 45, 47, 52,56.

- The Localized Hartree-Fock method (LHF) to obtain an effective exact exchange Kohn-Sham potential [57,58] (module dscf only). The LHF potential is:

$$
\begin{equation*}
v_{x}(\mathbf{r})=\sum_{i j} n_{s} \frac{\phi_{i}(\mathbf{r}) \phi_{j}(\mathbf{r})}{\rho(\mathbf{r})}\left(-\int d \mathbf{r}^{\prime} \frac{\phi_{i}\left(\mathbf{r}^{\prime}\right) \phi_{j}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}+\left\langle\phi_{i}\right| v_{x}-v_{x}^{N L}\left|\phi_{j}\right\rangle\right) \tag{6.6}
\end{equation*}
$$

where $\phi$ are Kohn-Sham occupied molecular orbitals, $n_{s}=2$ for closed-shell systems and $v_{x}^{N L}$ is the non-local Hartree-Fock operator.

Additionally the Double-Hydbrid Functional B2-PLYP can be used for single point energy calculations. Note that one has to run an MP2 calculation after the DFT step to get the correct B2-PLYP energy!

B2-PLYP is a so-called double-hybrid density functional (DHDF) [59 that uses in addition to a non-local exchange contribution (as in conventional hybrid-GGAs) also a non-local perturbation correction for the correlation part. Note the following options/restrictions in the present version of this method:

- single point calculations only (computed with the DSCF and RIMP2/RICC2 modules).
- UKS treatment for open-shell cases.
- can be combined with resolution-of-identity approximation for the SCF step (RI-JK option).
- can be combined with the dispersion correction (DFT-D method, $\left.s_{6}(\mathrm{~B} 2-\mathrm{PLYP})=0.55\right)$.

The non-local perturbation correction to the correlation contribution is given by second-order perturbation theory. The idea is rooted in the ab initio Kohn-Sham perturbation theory (KS-PT2) by Görling and Levy [60,61]. The mixing is described by two empirical parameters $a_{x}$ and $a_{c}$ in the following manner:

$$
\begin{array}{r}
E_{X C}(D H D F)=\left(1-a_{x}\right) E_{X}(G G A)+a_{x} E_{X}(H F)  \tag{6.7}\\
+\left(1-a_{c}\right) E_{C}(G G A)+a_{c} E_{C}(K S-P T 2),
\end{array}
$$

where $E_{X}(G G A)$ is the energy of a conventional exchange functional and $E_{C}(G G A)$ is the energy of a correlation functional. $E_{X}(H F)$ is the Hartree-Fock exchange of the occupied Kohn-Sham orbitals and $E_{C}(K S-P T 2)$ is a Møller-Plesset like perturbation correction term based on the KS orbitals:

$$
\begin{equation*}
E_{C}(K S-P T 2)=\frac{1}{2} \sum_{i a} \sum_{j b} \frac{(i a \mid j b)[(i a \mid j b)-(i b \mid j a)]}{e_{i}+e_{j}-e_{a}-e_{b}} \tag{6.8}
\end{equation*}
$$

The method is self-consistent only with respect to the first three terms in Eq. 6.7, i.e., first a SCF using a conventional hybrid-GGA is performed first. Based on these orbitals $E_{C}(K S-P T 2)$ is evaluated afterwards and added to the total energy.
For B2-PLYP, B88 exchange 48] and LYP correlation 49 are used with the parameters $a_{x}=0.53$ and $a_{c}=0.27$. Due to the relatively large Fock-exchange fraction, self-interaction error related problems are alleviated in B2-PLYP while unwanted side effects of this (reduced account of static correlation) are damped or eliminated by the PT2 term.
How to use B2-PLYP:

- during preparation of your input with Define select b2-plyp in the DFT menu.
- carry out a Dscf run. Prepare and run a RI-MP2 calculation with either RIMP2 or RICC2 program modules.
- the RI-MP2 program directly prints the B2PLYP energy if this functional has been chosen before
- if you use the RICC2 program the scaled $\left(a_{c}=0.27\right)$ second-order correlation energy. must be added manually to the SCF-energy.
- in order to maintain consistency of the PT2 and GGA correlation parts, it is recommend not to apply the frozen-core approximation in the PT2 treatment.


### 6.3 Restricted Open-Shell Hartree-Fock

### 6.3.1 Brief Description

The spin-restricted open-shell Hartree-Fock method (ROHF) can always be chosen to systems where all unpaired spins are parallel. The TURBOMOLE keywords for such a case (one open shell, triplet $\mathrm{e}_{g}^{2}$ ) are:

```
$open shells type=1
 eg 1
$roothaan 1
 a=1 b=2
```

    (1)
    It can also treat more complicated open-shell cases, as indicated in the tables below. In particular, it is possible to calculate the $[\mathrm{xy}]^{\text {singlet }}$ case. As a guide for expert users, complete ROHF TURBOMOLE input for $\mathrm{O}_{2}$ for various CSFs (configuration state function) is given in Section 16.6. Further examples are collected below.
The ROHF ansatz for the energy expectation value has a term for interactions of closed-shells with closed-shells (indices $k, l$ ), a term for purely open-shell interactions (indices $m, n$ ) and a coupling term $(k, m)$ :

$$
\begin{aligned}
E= & 2 \sum_{k} h_{k k}+\sum_{k, l}\left(2 J_{k l}-K_{k l}\right) \\
& +f\left[2 \sum_{m} h_{m m}+f \sum_{m, n}\left(2 a J_{m n}-b K_{m n}\right)+2 \sum_{k, m}\left(2 J_{k m}-K_{k m}\right)\right]
\end{aligned}
$$

where $f$ is the (fractional) occupation number of the open-shell part $(0<f<1)$, and $a$ and $b$ are the Roothaan parameters, numerical constants which depend on the particular configuration of interest.

### 6.3.2 One Open Shell

Given are term symbols (up to indices depending on actual case and group) and $a$ and $b$ coefficients. $n$ is the number of electrons in an irrep with degeneracy $n_{i r}$. Note that not all cases are Roothaan cases.
All single electron cases are described by:

$$
a=b=0
$$

Table 6.1: Roothaan-coefficients $a$ and $b$ for cases with degenerate orbitals.

$n_{i r}=2:$ e (div. groups), $\pi, \delta\left(C_{\infty v}, D_{\infty h}\right)$						
$n$	$f$	$\mathrm{e}^{n}$	$\pi^{n}$	$\delta^{n}$	$a$	$b$
2	$1 / 2$	${ }^{3} \mathrm{~A}$	${ }^{3} \Sigma$	${ }^{3} \Sigma$	1	2
		${ }^{1} \mathrm{E}^{*}$	${ }^{1} \Delta$	${ }^{1} \Gamma$	1/2	0
		${ }^{1} \mathrm{~A}$	${ }^{1} \Sigma$	${ }^{1} \Sigma$	0	-2
3	3/4	${ }^{2} \mathrm{E}$	${ }^{2} \Pi$	${ }^{2} \Delta$	8/9	8/9
$1 n_{i r}=3: \mathrm{p}(\mathrm{O}(3)), \mathrm{t}(T, O, I)^{\dagger}$						
$n$	$f$	$\mathrm{p}^{n}$			$a$	$b$
2	$1 / 3$	${ }^{3} \mathrm{P}$			3/4	3/2
		${ }^{1} \mathrm{D}^{* *}$			9/20	$-3 / 10$
		${ }^{1} \mathrm{~S}$			0	-3
3	$1 / 2$	${ }^{4} \mathrm{~S}$			$\begin{gathered} 1 \\ 4 / 5 \end{gathered}$	$\begin{gathered} 2 \\ 4 / 5 \\ \hline \end{gathered}$
		${ }^{2} \mathrm{D}^{* *}$				
		${ }^{2} \mathrm{P}$			2/3	0
4	2/3	${ }^{3} \mathrm{P}$			15/16	$\begin{gathered} 9 / 8 \\ 27 / 40 \\ 0 \end{gathered}$
		${ }^{1} \mathrm{D}^{* *}$			$\begin{gathered} \hline 69 / 80 \\ 3 / 4 \end{gathered}$	
		${ }^{1} \mathrm{~S}$				
5	5/6	${ }^{2} \mathrm{P}$			24/25	24/25
only irrep $\mathrm{g}(I)$   (mainly high spin available)						
$n$	$f$	$\mathrm{g}^{n}$			$a$	$b$
1	$\begin{aligned} & 1 / 8 \\ & \hline 1 / 4 \end{aligned}$	${ }^{2} \mathrm{G}$			0	0
2		†			2/3	4/3
		${ }^{1} \mathrm{~A}$			0	-4
3	3/8	${ }^{4} \mathrm{G}$			8/9	16/9
4	$1 / 2$	${ }^{5} \mathrm{~A}$			1	2
5	5/8	${ }^{4} \mathrm{G}$			24/25	32/25
6	$3 / 4$	$\dagger$			26/27	28/27
		${ }^{1} \mathrm{~A}$			8/9	4/9
7	7/8	${ }^{2} \mathrm{G}$			48/49	48/49

continues on next page

Table 6.1: Roothaan-coefficients $a$ and $b$ for cases with degenerate orbitals (continued).

$\mathrm{d}(\mathrm{O} 3), \mathrm{h}(I)$   (mainly high-spin cases work)					
$n$	$f$	$\mathrm{~d}^{n}$	$a$	$b$	
1	$1 / 10$	${ }^{2} \mathrm{D}$	0	0	
2	$1 / 5$	${ }^{3} \mathrm{~F}+{ }^{3} \mathrm{P}^{\dagger \dagger}$	$5 / 8$	$5 / 4$	
		${ }^{1} \mathrm{~S}$	0	-5	
3	$3 / 10$	${ }^{4} \mathrm{~F}+{ }^{4} \mathrm{P}^{\dagger \dagger}$	$5 / 6$	$5 / 3$	
4	$2 / 5$	${ }^{5} \mathrm{D},{ }^{5} \mathrm{H}$	$15 / 16$	$15 / 8$	
5	$1 / 2$	${ }^{6} \mathrm{~S},{ }^{6} \mathrm{~A}$	1	2	
6	$3 / 5$	${ }^{5} \mathrm{D},{ }^{5} \mathrm{H}$	$35 / 36$	$25 / 18$	
7	$7 / 10$	${ }^{4} \mathrm{~F}+{ }^{4} \mathrm{P}^{\dagger \dagger}$	$95 / 98$	$55 / 49$	
8	$4 / 5$	${ }^{3} \mathrm{~F}+{ }^{3} \mathrm{P}^{\dagger \dagger}$	$125 / 128$	$65 / 64$	
		${ }^{1} \mathrm{~S}$	$15 / 16$	$5 / 8$	
9	$9 / 10$	${ }^{2} \mathrm{D},{ }^{2} \mathrm{H}$	$80 / 81$	$80 / 81$	

* except cases (e.g. $D_{2 d}$ or $D_{4 h}$ ) where e ${ }^{2}$ gives only one-dimensional irreps, which are not Roothaan cases.
${ }^{\dagger}$ only $\mathrm{p}^{n}$ given, the state for groups $T_{d}$ etc. follows from $\mathrm{S} \rightarrow \mathrm{A}(T, O, I) \mathrm{P} \rightarrow \mathrm{T}(T, O, I) \mathrm{D} \rightarrow \mathrm{H}(I), \mathrm{E}+\mathrm{T}(T, O)$
${ }^{* *}$ This is not a CSF in $T$ or $O,(a, b)$ describes average of states resulting from $\mathrm{E}+\mathrm{T}$
${ }^{\dagger \dagger}(a, b)$ describes weighted average of high spin states, not a CSF.


## Example

The $4 d^{9} 5 s^{2}{ }^{2} \mathrm{D}$ state of Ag , in symmetry $I$

## \$closed shells

a
1-5
(2)
t1 1-3
( 2 )
h $\quad 1$
( 2 )
\$open shells type=1
h
2
( $9 / 5$ )
$\begin{array}{ll}\text { \$roothaan } & 1 \\ a=80 / 81 & b=80 / 81\end{array}$

### 6.3.3 More Than One Open Shell

## A Half-filled shell and all spins parallel

All open shells are collected in a single open shell and

$$
a=1 \quad b=2
$$

Example: The $4 d^{5} 5 s^{1}{ }^{7}$ S state of Mo, treated in symmetry I

\$roothaan 1	
$\mathrm{a}=1 \quad \mathrm{~b}=2$	
\$closed shells	
a 1-4	( 2 )
t1 1-3	( 2 )
$\mathrm{h} \quad 1$	( 2 )
\$open shells type=1	
a 5	( 1 )
$\mathrm{h} \quad 2$	( 1 )

## Two-electron singlet coupling

The two MOs must have different symmetries (not required for triplet coupling, see example 6.3.3). We have now two open shells and must specify three sets of $(a, b)$, i.e. one for each pair of shells, following the keyword $\$$ rohf.

Example: $\mathrm{CH}_{2}$ in the ${ }^{1} \mathrm{~B}_{2}$ state from $\left(3 \mathrm{a}_{1}\right)^{1}\left(1 \mathrm{~b}_{2}\right)^{1}$, molecule in $(\mathrm{x}, \mathrm{z})$ plane.

\$closed shells				
a1	1-2			( 2 )
b1	1			( 2 )
\$open shells type=1				
a1	3			( 1 )
b2	1			( 1 )
\$roothaan		1		
\$rohf				
3a1-3a1 a			$b=0$	
1b2-1b2 a			$\mathrm{b}=0$	
$3 \mathrm{a} 1-1 \mathrm{~b} 2 \mathrm{a}$			$\mathrm{b}=-2$	

## Two open shells

This becomes tricky in general and we give only the most important case:
shell 1 is a Roothaan case, see 6.3.2
shell 2 is one electron in an a (s) MO $\left(n_{i r}=1\right)$
with parallel spin coupling of shells.
This covers e.g. the $p^{5} s^{1}{ }^{3} \mathrm{P}$ states, or the $d^{4} s^{1}{ }^{6} \mathrm{D}$ states of atoms. The coupling information is given following the keyword $\$$ rohf. The $(a, b)$ within a shell are taken from above (6.3.2), the cross term (shell 1)-(shell 2) is in this case:

$$
\begin{aligned}
& a=1 \quad \text { always } \\
& b=2 \quad \text { if } n \leq n_{i r} \quad b=\frac{\left(2 n_{i r}\right)}{n} \quad \text { if } n>n_{i r}
\end{aligned}
$$

where $n_{i r}$ and $n$ refer to shell 1 .

Example 1: The $4 d^{4} 5 s^{1}{ }^{6} \mathrm{D}$ state of Nb , in symmetry I


Example 2: The $4 d^{5} 5 s^{1}{ }^{7}$ S state of Mo, symmetry $I$ (see Section 6.3.3) can also be done as follows.

\$roothaan   \$rohf	1	
$5 \mathrm{a}-5 \mathrm{a}$	$\mathrm{a}=0$	$\mathrm{~b}=0$
$5 \mathrm{a}-2 \mathrm{~h}$	$\mathrm{a}=1$	$\mathrm{~b}=2$
$2 \mathrm{~h}-2 \mathrm{~h}$	$\mathrm{a}=1$	$\mathrm{~b}=2$


\$closed shells	
a	$1-4$
t1	$1-3$
h	1
\$open	shells type $=1$
a	5
h	2

The shells $5 s$ and $4 d$ have now been made inequivalent. Result is identical to 6.3.3 which is also more efficient.

Example 3: The $4 d^{9} 5 s^{13} \mathrm{D}$ state of Ni , symmetry $I$

\$closed shells	
a 1-3	( 2 )
t1 1-2	( 2 )
\$open shells type=1	
a 4	( 1 )
$\mathrm{h} \quad 1$	( 9/5 )
\$roothaan 1	
\$rohf	
$4 \mathrm{a}-4 \mathrm{a} a=0 \quad \mathrm{~b}=0$	
$1 \mathrm{~h}-1 \mathrm{~h} \mathrm{a}=80 / 81 \mathrm{~b}=80 / 81$	
$4 \mathrm{a}-1 \mathrm{~h} a=1 \quad \mathrm{~b}=10 / 9$	

(see basis set catalogue, basis SV.3D requires this input and gives the energy you must get)

### 6.3.4 Miscellaneous

## Valence states

Valence states are defined as the weighted average of all CSFs arising from an electronic configuration (occupation): (MO) ${ }^{n}$. This is identical to the average energy of all Slater determinants.

$$
a=b=\frac{2 n_{i r}(n-1)}{\left(2 n_{i r}-1\right) n}
$$

This covers, e.g. the cases $n=1$ and $n=2 n_{i r}-1: p^{1}, p^{5}, d^{1}$, $d^{9}$, etc, since there is only a single CSF which is identical to the average of configurations.

Totally symmetric singlets for 2 or ( $2 \mathbf{n}_{i r}-2$ ) electrons

$$
\begin{array}{ll}
n=2 & a=0 \quad b=-n_{i r} \\
n=\left(2 n_{i r}-2\right) & a=\frac{n_{i r}\left(n_{i r}-2\right)}{\left(n_{i r}-1\right)^{2}} \\
& b=\frac{n_{i r}\left(n_{i r}-3\right)}{\left(n_{i r}-1\right)^{2}}
\end{array}
$$

This covers the ${ }^{1} \mathrm{~S}$ states of $p^{2}, p^{4}, d^{2}, d^{8}$, etc.

## Average of high-spin states: $n$ electrons in MO with

 degenerate $n_{i r}$.$$
\begin{aligned}
& a=\frac{n_{i r}(4 k(k+l-1)+l(l-1))}{\left(n_{i r}-1\right) n^{2}} \\
& b=\frac{2 n_{i r}(2 k(k+l-1)+l(l-1))}{\left(n_{i r}-1\right) n^{2}}
\end{aligned}
$$

where: $k=\max \left(0, n-n_{i r}\right), l=n-2 k=2 S \quad$ (spin)
This covers most of the cases given above. A CSF results only if $n=\left\{1,\left(n_{i r}-1\right)\right.$, $\left.n_{i r},\left(n_{i r}+1\right),\left(2 n_{i r}-1\right)\right\}$ since there is a single high-spin CSF in these cases.
The last equations for $a$ and $b$ can be rewritten in many ways, the probably most concise form is

$$
\begin{aligned}
& a=\frac{n(n-2)+2 S}{(n-2 f) n} \\
& b=\frac{n(n-2)+(2 S)^{2}}{(n-2 f) n} .
\end{aligned}
$$

This applies to shells with one electron, one hole, the high-spin couplings of halffilled shells and those with one electron more ore less. For $d^{2}, d^{3}, d^{7}$, and $d^{8}$ it represents the (weighted) average of high-spin cases: ${ }^{3} \mathrm{~F}+{ }^{3} \mathrm{P}$ for $d^{2}, d^{8},{ }^{4} \mathrm{~F}+{ }^{4} \mathrm{P}$ for $d^{3}, d^{7}$.

### 6.4 Two-component Hartree-Fock and DFT Calculations

### 6.4.1 Background Theory

Two-component treatments allow for self-consistent calculations including spin-orbit interactions. These may be particularly important for compounds containing heavy elements (additionally to scalar relativistic effects). Two-component treatments were implemented within the module ridft for RI-JK-Hartree-Fock and RI-DFT (local, gradient-corrected and hybrid functionals) via effective core potentials describing both scalar and spin-orbit relativistic effects. The theoretical background and the implementation is described in 62 . Two-component treatments require the use of complex two-component orbitals

$$
\psi_{i}(\mathbf{x})=\binom{\psi_{i}^{\alpha}(\mathbf{r})}{\psi_{i}^{\beta}(\mathbf{r})}
$$

instead of real (non-complex) one-component orbitals needed for non-relativistic or scalar-relativistic treatments. The Hartree-Fock and Kohn-Sham equations are now spinor equations with a complex Fock operator

$$
\left(\begin{array}{ll}
\hat{F}^{\alpha \alpha} & \hat{F}^{\alpha \beta} \\
\hat{F}^{\beta \alpha} & \hat{F}^{\beta \beta}
\end{array}\right)\binom{\psi_{i}^{\alpha}(\mathbf{r})}{\psi_{i}^{\beta}(\mathbf{r})}=\epsilon_{i}\binom{\psi_{i}^{\alpha}(\mathbf{r})}{\psi_{i}^{\beta}(\mathbf{r})} .
$$

The wavefunction is no longer eigenfunction of the spin operator, the spin vector is no longer an observable.

In case of DFT for open-shell systems rotational invariance of the exchange-correlation energy was ensured by the non-collinear approach. In this approach the exchangecorrelation energy is a functional of the particle density and the absolute value of the spin-vector density $\vec{m}(\mathbf{r})(\overrightarrow{\boldsymbol{\sigma}}$ are the Pauli matrices)

$$
\vec{m}(\mathbf{r})=\sum_{i} \psi_{i}^{\dagger}(\mathbf{x}) \overrightarrow{\boldsymbol{\sigma}} \psi_{i}(\mathbf{x})
$$

This quantity replaces the spin-density (difference between density of alpha and beta electrons) of non- or scalar-relativistic treatments.
For closed-shell species the Kramers-restricted scheme, a generalization of the RHFscheme of one component treatments, is applicable.

### 6.4.2 How to use

The keyword \$soghf enforces the two-component calculations. Keywords for specification of the method of calculation are the same as for the one-component case (\$dft and $\$$ rij for pure density functional calculations within the RI- $J$-approximation, \$rij and \$rik for Hartree-Fock with the RI-approximation for Coulomb and exchange operators, and all three keywords for Hybrid-DFT). The DIIS scheme for
complex Fock operators can be activated by inserting \$gdiis in the control-file. For closed-shell species a Kramers invariant density functional formalism (only pure density functionals) can be switched on with the keyword $\$$ kramers. These keywords have to be inserted into the control-file manually.
As start wavefunctions Hückel-, UHF- or RHF-wavefunctions may be used. The two-component formalism does not support the point group symmetries, start wave functions may be transformed to C1 symmetry by define or the script 'uhfuse'.
For spin-orbit treatments two-component ECPs (suffix $-2 c$ ) are required, the use of extended basis sets accounting for the spatial splitting of inner p-shells (also suffix $-2 c$ ) is recommended (see 63]). ECPs and basis sets def2-XVP-2c ( $\mathrm{X}=\mathrm{S}, \mathrm{TZ}$, QZ ) are available for $\mathrm{Ag}-\mathrm{I}, \mathrm{Au}$ - At, they can be selected within the define session. RI- $J$ and RI- $J K$ auxiliary basis sets of def2-type are of sufficient flexibility for twocomponent treatments; they are the same with and without suffix $-2 c$.
The two-component formalism may be most easily prepared and applied in the following way:

- run define: choose C1-symmetry; select ECPs and basis sets with suffices $-2 c$ for the respective elements. The corrresponding auxiliary basis sets are provided automatically.
- insert \$soghf in the control file (as well as further desired keywords).
- For open-shell molecules it is often helpful to increase the value for $\$$ scforbitalshift closedshell; a value of ca. 1.0 may serve as a rough recommendation.
- start the two-component calculation with ridft
- At the end of the SCF procedure real and imaginary parts of spinors are written to files spinor.r and spinor.i, eigenvalues and spinor occupations are collected in the file EIGS, the total energy is added to data group \$energy. The data groups \$closed shells (\$alpha shells and \$beta shells for open shell cases) are no longer significant, but nevertheless kept in the control-file; additionally the spinor occupations are diposited in data group \$spinor.


### 6.5 Using the Douglas-Kroll-Hess (DKH) Hamiltonian

For consideration of scalar-relativistic effects in all-electron calculations the scalarrelativistic Douglas-Kroll-Hess (DKH) Hamiltonian can be employed in the modules dscf and ridft. Please make sure to use an all-electron basis set (in particular, ECPs are not allowed).
This Hamiltonian is defined up to a certain order in the external potential and is available up to arbitrary order (for actual calculations, however, it is advisable not to go beyond 4th order (the parameter settings of the implementation allow to run calculations up to about 10th order in the electron-nucleus potential).
The current implemtation is restricted to single-point calculations (gradients are not available) in C1-symmetry and cannot be used in parallel mode. Moreover, calculated properties using the DKH density do not take care of the 'picture-change' effect.

The arbitrary-order Hamiltonian requires in the control file:

## \$dkhorder integer

where integer specifies the order of the DKH Hamiltonian in the external potential, i.e. for the standard 2nd-order DKH Hamiltonian one should use \$dkhorder 2.

The parametrization of the unitary transformation used in the DKH transformation can be optionally selected by
\$dkhparam integer
The possible parametrizations in the DKH transformation are:
\$dkhparam 1: Optimum parametrization (OPT)
\$dkhparam 2: Exponential parametrization (EXP)
\$dkhparam 3: Square-root parametrization (SQR)
\$dkhparam 4: McWeeny parametrization (MCW)
\$dkhparam 5: Cayley parametrization (CAY)
Note in particular that the parametrization does not affect the Hamiltonian up to fourth order. Therefore, as long as you run calculations with DKH Hamiltonians below 5th order you may use any symbol for the parametrization as they would all yield the same results. Higher-order DKH Hamiltonians depend slightly on the chosen paramterization of the unitary transformations applied in order to decouple the Dirac Hamiltonian, but this effect can be neglected.
For details on the arbitrary-order DKH Hamiltonians see Ref. [64] for details on the infinite-order DKH theory, 65] for the implementation, and 66] for a conceptual review of DKH theory. For details on the different parametrizations of the unitary transformations see 67].

### 6.6 Periodic Electrostatic Embedded Cluster Method

### 6.6.1 General Information

The Periodic Electrostatic Embedded Cluster Method (PEECM) functionality 68] provides electronic embedding of a finite, quantum mechanical cluster in a periodic, infinite array of point charges. It is implemented within HF and DFT energy and gradient TURBOMOLE modules: dscf, grad, ridft, rdgrad, and escf. Unlike embedding within a finite set of point charges the PEEC method always yields the correct electrostatic (Madelung) potential independent of the electrostatic moments of the point charges field. It is also significantly faster than the traditional finite point charges embedding.

### 6.6.2 Theoretical Background

Generally, the PEEC method divides the entire, periodic and infinite system into two parts, the inner (I) part, or so called cluster, and the outer ( O ) part which describes its environment. Thus, unlike "true" periodic quantum mechanical methods, PEECM primarily aims at calculations of structure and properties of localized defects in dominantly ionic crystals. The innermost part of the cluster is treated quantum mechanically ( QM ), whereas in the remaining cluster part cations are replaced by effective core potentials (ECPs) and anions by ECPs or by simply point charges. Such an "isolating" outer ECP shell surrounding the actual QM part is necessary in order to prevent artificial polarization of the electron density by cations which would otherwise be in a direct contact with the QM boundary. The outer part or the environment of the cluster is described by a periodic array of point charges, representing cationic and anionic sites of a perfect ionic crystal.

The electronic Coulomb energy term arising from the periodic field of point charges surrounding the cluster has the following form

$$
J=\sum_{\mu \nu} \sum_{k}^{N \in \mathrm{UC}} \sum_{\vec{L} \in \mathrm{O}}^{\infty} D_{\mu \nu} q_{k} \int \frac{\mu(\vec{r}) \nu(\vec{r})}{\left|\vec{r}-\vec{R}_{k}-\vec{L}\right|} d \vec{r},
$$

where UC denotes the unit cell of point charges, $D_{\mu \nu}$ are elements of the density matrix, $\mu, \nu$ are basis functions, $q_{k}, \vec{R}_{k}$ denote charges and positions of point charges, and $\vec{L}$ denote direct lattice vectors of the outer part $O$. It is evaluated using the periodic fast multipole method (PFMM) 69 which, unlike the Ewald method [70], defines the lattice sums entirely in the direct space. In general, PFMM yields a different electrostatic potential then the Ewald method, but the difference is merely a constant shift which depends on the shape of external infinite surface of the solid (i.e. on the way in which the lattice sum converges toward the infinite limit). However, this constant does not influence relative energies which are the same as obtained using the Ewald method, provided that the total charge of the cluster remains constant. Additionally, since the electrostatic potential within a solid is not
a well defined quantity, both the absolute total energies and orbital energies have no meaning (i.e. you cannot compare energies of neutral and charged clusters!).

### 6.6.3 Calculation Setup

There are three key steps in setting up a PEECM calculation. In the first step the periodic field of point charges has to be defined by specifying the point charges unit cell. Next step is the definition of the part infinite of point charges field that will be replaced by the explicit quantum mechanical cluster. Finally, the quantum mechanical cluster together with surrounding ECPs representing cationic sites as well as point charges representing anions is defined and put in place of the point charges. The input preparation steps can be summarized as follows

1. Dimensionality of the system is specified by the keyword periodic in the \$embed section: periodic 3 means a bulk three-dimensional system, periodic 2 denotes a two-dimensional surface with an aperiodic $z$ direction.
2. Definition of the unit cell of periodic point charges field is specified in the subsections cell and content of the \$embed section.
3. Definition of the values of the point charges by specifying a charge value per species, using the subsection charges, or a charge value for each point charge, using the subsection ch_list. Note that only one of the subsections can be defined.
4. Definition of the part of point charges field that will be replaced by the QM cluster together with the isolating shell (ECPs, explicit point charges) is specified in the subsection cluster of the \$embed section.
5. Definition of the quantum mechanical cluster as well as the surrounding ECPs and anionic point charges is included in the usual \$coord section.

The following two examples show the definition of the point charges unit cells.

## Example 1. $\mathrm{Ca}_{4} \mathrm{~F}_{19}$ cluster embedded in bulk $\mathrm{CaF}_{2}$

In this example a QM cluster with the composition $\mathrm{Ca}_{4} \mathrm{~F}_{19}$, surrounded by 212 ECPs and 370 explicit point charges, representing $\mathrm{Ca}^{2+}$ cations and $\mathrm{F}^{-}$anions is embedded in a periodic field of point charges ( +2 for Ca and -1 for F ) corresponding to the $\mathrm{CaF}_{2}$ fluorite lattice.
First, the program has to know that this is a three-dimensional periodic system. This is specified by the keyword periodic 3, meaning periodicity in three dimensions. The dimensions of the unit cell for bulk $\mathrm{CaF}_{2}$ are given in the subsection cell of the \$embed keyword. By default, the unit cell dimensions are specified in atomic units and can be changed to $\AA$ using cell ang. The positions of the point charges in the unit cell are specified in the subsection content. In this example positions are given in fractional crystal coordinates (content frac). You can change this by specifying content for Cartesian coordinates in atomic units or content ang for

Cartesian coordinates in $\AA$. The values of point charges for Ca and F are given in the subsection charges.

```
$embed
periodic 3
cell
 10.47977 10.47977 10.47977 90.0 90.0 90.0
content frac
 F 0.00 0.00 0.00
 Ca -0.25 -0.75 -0.75
 F 0.50 -0.50 0.00
 F 0.50 0.00 -0.50
 F
 F 0.50 -0.50 -0.50
 F 0.00 0.00 -0.50
 F 0.50 0.00 0.00
 F 0.00 -0.50 0.00
 Ca -0.25 -0.25 -0.25
 Ca 0.25 -0.75 -0.25
 Ca 0.25 -0.25 -0.75
end
...
charges
 F -1.0
 Ca 2.0
end
```

The above input defines a periodic, perfect, and infinite three-dimensional lattice of point charges corresponding to the bulk $\mathrm{CaF}_{2}$ structure. In order to use this lattice for PEECM calculation we have to make "space" for our QM cluster and the isolating shell. This is done by specifying the part of the lattice that is virtually removed from the perfect periodic array of point charges to make space for the cluster. The positions of the removed point charges are specified in the subsection cluster of the \$embed keyword. Note, that the position of the QM cluster and the isolating shell must exactly correspond to the removed part of the crystal, otherwise positions of the cluster atoms would overlap with positions of point charges in the periodic lattice, resulting in a "nuclear fusion".

```
cluster
 F 0.00000000000000 0.000000000000000 0.00000000000000
 Ca -2.61994465796043 -2.61994465796043 -2.61994465796043
 Ca 2.61994465796043 -2.61994465796043 2.61994465796043
 Ca 2.61994465796043 2.61994465796043 -2.61994465796043
 Ca -2.61994465796043 2.61994465796043 2.61994465796043
```

F	-5.23988931592086	0.00000000000000	0.00000000000000
F	0.00000000000000	0.00000000000000	-5.23988931592086
F	5.23988931592086	0.00000000000000	0.00000000000000
F	0.00000000000000	-5.23988931592086	0.00000000000000
F	0.00000000000000	0.00000000000000	5.23988931592086
F	0.00000000000000	5.23988931592086	0.00000000000000
F	-5.23988931592086	-5.23988931592086	0.00000000000000
F	-5.23988931592086	0.00000000000000	-5.23988931592086
F	-5.23988931592086	0.00000000000000	5.23988931592086
F	-5.23988931592086	5.23988931592086	0.00000000000000
F	5.23988931592086	-5.23988931592086	0.00000000000000

repeated for $C_{216} F_{389}$
end
By default, the positions of point charges are specified in atomic units as Cartesian coordinates. You can change this by specifying cluster frac for fractional crystal coordinates or cluster ang for Cartesian coordinates in $\AA$.
Finally, you have to specify the coordinates of the QM cluster along with the surrounding ECPs representing cationic sites and explicit point charges representing anions. This is done in the usual way using the \$coord keyword.
\$coord

0.0000000000000	0.00000000000000	0.00000000000000	f
-2.86167504097169	-2.86167504097169	-2.86167504097169	ca
2.86167504097169	2.86167504097169	-2.86167504097169	ca
-2.86167504097169	2.86167504097169	2.86167504097169	ca
2.86167504097169	-2.86167504097169	2.86167504097169	ca
0.00000000000000	-5.24009410923923	0.00000000000000	f
-5.24009410923923	0.00000000000000	0.00000000000000	f
0.00000000000000	5.24009410923923	0.00000000000000	f
0.00000000000000	0.00000000000000	-5.24009410923923	f
5.24009410923923	0.00000000000000	0.00000000000000	f
0.00000000000000	0.00000000000000	5.24009410923923	f
0.00000000000000	-5.24009410923923	-5.24009410923923	f
-5.24009410923923	-5.24009410923923	0.00000000000000	f
5.24009410923923	-5.24009410923923	0.00000000000000	f
0.00000000000000	-5.24009410923923	5.24009410923923	f
0.00000000000000	5.24009410923923	-5.24009410923923	f

repeated for $C a_{216} F_{389}$
\$end

This is the standard TURBOMOLE syntax for atomic coordinates. The actual distinction between QM cluster, ECP shell, and explicit point charges is made in the \$atoms section.

```
$atoms
f 1,6-23
 basis =f def-TZVP
ca 2-5
 basis =ca def-TZVP
ca 24-235
 basis =none
 ecp =ca ecp-18 hay & wadt
f 236-605
 basis =none
 charge= -1.00000000
```

In the example above the F atoms 1 and $6-23$ as well Ca atoms 2-5 are defined as QM atoms with def-TZVP basis sets. The Ca atoms $24-235$ are pure ECPs and have no basis functions (basis =none) and F atoms 236 -605 are explicit point charges with charge -1 , with no basis functions and no ECP.
This step ends the input definition for the PEECM calculation.

## Example 2. $\mathrm{Al}_{8} \mathrm{O}_{12}$ cluster embedded in $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$ (0001) surface

In this example a QM cluster with the composition $\mathrm{Al}_{8} \mathrm{O}_{12}$, surrounded by 9 ECPs representing $\mathrm{Al}^{3+}$ cations is embedded in a two-dimensional periodic field of point charges ( +3 for Al and -2 for O ) corresponding to the ( 0001 ) surface of $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$.
As in the first example, the program has to know that this is a two-dimensional periodic system and this is specified by the keyword periodic 2 . The dimensions of the unit cell for the $(0001) \alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$ surface are given in the subsection cell of the \$embed keyword. The aperiodic direction is always the $z$ direction, but you have to specify the unit cell as if it was a 3D periodic system. This means that the third dimension of the unit cell must be large enough to enclose the entire surface in this direction. The unit cell dimensions are specified in $\AA$ using cell ang. The positions of the point charges in the unit cell are specified as Cartesian coordinates in $\AA$ (content ang). The values of point charges for Al and O are given in the subsection charges.

```
$embed
periodic 2
cell angs
 4.8043 4.8043 24.0000 90.0000 90.0000 120.0000
content ang
 Al 2.402142286 1.386878848 5.918076515
 Al -0.000013520 -0.000003382 7.611351967
```

Al	-0.000008912	2.773757219	8.064809799
Al	2.402041674	1.386946321	0.061230399
Al	-0.000005568	-0.000003223	10.247499466
Al	2.402137518	1.386872172	9.977437973
Al	0.000000070	2.773757935	5.390023232
Al	0.000006283	-0.000005607	3.696748018
Al	2.402151346	1.386879444	3.243290186
Al	0.000100868	2.773690462	11.246870041
Al	-0.000001982	-0.000005796	1.060600400
Al	0.000004853	2.773764610	1.330662251
0	-0.731205344	1.496630311	6.749288559
0	0.743527174	1.296469569	8.957922935
0	1.588027477	0.104536049	11.127140045
0	1.471626759	2.779079437	6.749288559
0	3.309734344	-0.004341011	8.957920074
0	3.919768333	1.323050499	11.127141953
0	-0.740424335	4.045563698	6.749289513
0	-1.651123047	2.868478537	8.957910538
0	1.698525310	2.733071804	11.127161026
0	3.133347750	2.664006472	4.558811665
0	1.658615232	2.864167213	2.350177050
0	0.814115047	4.056100845	0.180959582
0	0.930515707	1.381557465	4.558811188
0	1.494558096	0.004332162	2.350180149
0	-1.517625928	2.837586403	0.180958077
0	3.142566681	0.115072958	4.558810234
0	-0.751034439	1.292158127	2.350189686
0	0.703617156	1.427564979	0.180938885
end			
charges			
$0-2.0$			
Al 3.0			
end			

The above input defines a periodic, perfect, and infinite two-dimensional lattice of point charges corresponding to the (0001) $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$ surface. In order to use the lattice for PEECM calculation we have to make "space" for our QM cluster and the surrounding ECP shell. This is done by specifying the part of the lattice that is virtually removed from the perfect periodic array of point charges to make space for the cluster. The positions of the removed point charges are specified in the subsection cluster of the \$embed keyword. Note, that the position of the QM cluster must exactly correspond to the removed part of the crystal, otherwise positions of the cluster atoms would overlap with positions of point charges in the periodic lattice,
resulting in a "nuclear fusion".

cluster ang			
Al	-0.000012482	5.547518253	9.977437973
Al	2.402141094	6.934402943	8.064809799
Al	2.402144432	4.160642624	10.247499466
Al	4.804287434	5.547518253	9.977437973
Al	2.402250767	6.934336185	11.246870041
Al	-0.000005568	8.321288109	10.247499466
Al	2.402137518	9.708164215	9.977437973
Al	4.804294586	8.321288109	10.247499466
0	0.907584429	4.156304836	8.957920074
0	1.517618299	5.483696461	11.127141953
0	-0.703624666	6.893717766	11.127161026
0	3.145677090	5.457115650	8.957922935
0	3.990177393	4.265182018	11.127140045
0	0.751026928	7.029124260	8.957910538
0	4.100675106	6.893717766	11.127161026
0	0.743527174	9.617761612	8.957922935
0	1.588027477	8.425827980	11.127140045
0	3.309734344	8.316950798	8.957920074
0	3.919768333	9.644342422	11.127141953
0	5.555326939	7.029124260	8.957910538
Al	4.804400921	11.094982147	11.246870041
Al	-0.000008912	2.773757219	8.064809799
Al	-2.402049065	6.934336185	11.246870041
Al	4.804400921	2.773690462	11.246870041
Al	2.402136564	4.160642624	7.611351967
Al	-0.000013520	8.321288109	7.611351967
Al	-0.000008912	11.095048904	8.064809799
Al	7.206440926	6.934402943	8.064809799
Al	4.804286480	8.321288109	7.611351967
end			

The positions of point charges are specified in $\AA$ as Cartesian coordinates.
Finally, you have to specify the coordinates of the QM cluster along with the surrounding ECPs. This is done in the usual way using the \$coord keyword.

\$coord			
-0.00002358760000	10.48329315900000	18.85463057110000	al
4.53939007480000	13.10412613690000	15.24028611330000	al
4.53939638280000	7.86247730390000	19.36497297520000	al
9.07879006320000	10.48329315900000	18.85463057110000	al


4.53959732680000	13.10399998250000	21.25351019750000	al
-0.00001052200000	15.72496001430000	19.36497297520000	al
4.53938331720000	18.34577677080000	18.85463057110000	al
9.07880357850000	15.72496001430000	19.36497297520000	al
1.71508649490000	7.85428007030000	16.92802041340000	$\bigcirc$
2.86788376470000	10.36268741690000	21.02725683720000	$\bigcirc$
-1.32965829240000	13.02724227310000	21.02729288000000	-
5.94446987180000	10.31245694970000	16.92802581990000	$\bigcirc$
7.54034461170000	8.06002818410000	21.02725323160000	$\bigcirc$
1.41923561090000	13.28312353520000	16.92800239300000	$\bigcirc$
7.74915508620000	13.02724227310000	21.02729288000000	$\bigcirc$
1.40506312580000	18.17494056150000	16.92802581990000	-
3.00093786570000	15.92251179600000	21.02725323160000	$\bigcirc$
6.25449323900000	15.71676368210000	16.92802041340000	$\bigcirc$
7.40729073370000	18.22517102690000	21.02725683720000	$\bigcirc$
10.49804944110000	13.28312353520000	16.92800239300000	$\bigcirc$
9.07900452260000	20.96648359440000	21.25351019750000	al
-0.00001684120000	5.24164297480000	15.24028611330000	al
-4.53921616520000	13.10399998250000	21.25351019750000	al
9.07900452260000	5.24151682240000	21.25351019750000	al
4.53938151440000	7.86247730390000	14.38337475740000	al
-0.00002554910000	15.72496001430000	14.38337475740000	al
-0.00001684120000	20.96660974680000	15.24028611330000	al
13.61820356690000	13.10412613690000	15.24028611330000	al
9.07878826040000	15.72496001430000	14.38337475740000	al

\$end

This is the standard TURBOMOLE syntax for atomic coordinates. The actual distinction between QM cluster and ECP shell is made in the \$atoms section.

```
$atoms
al 1-8
 basis =al def-SV(P)
- 9-20
 basis =o def-SV(P)
al 21-29
 basis =none
 ecp =al ecp-10 hay & wadt
```

In the example above the Al atoms 1-8 and O atoms $9-20$ are defined as QM atoms with def-SV(P) basis sets. The Al atoms 21-29 are pure ECPs and have no basis functions (basis =none).
This step ends the input definition for the PEECM calculation.

### 6.7 Empirical Dispersion Correction for DFT Calculations

Based on an idea that has earlier been proposed for Hartree-Fock calculations 71, 72, a general empirical dispersion correction has been proposed by Stefan Grimme for density functional calculations [73]. A modified version of the approach with extension to more elements and more functionals has been published in ref. 74 . The most recent implementation [75] is less empirical, i.e. the most important parameters are computed by first principles, and it provides a consistent description across the whole periodic system.
The first version (DFT-D1) can be invoked by the keyword \$olddisp in the control file. The second version (DFT-D2) is used if the keyword \$disp is found. For the usage of DFT-D3 just add keyword \$disp3 to the control file. Only one of the three keywords is expected to be present.

If DFT-D3 is used, the total energy is given by

$$
\begin{equation*}
E_{D F T-D 3}=E_{K S-D F T}-E_{d i s p} \tag{6.9}
\end{equation*}
$$

where $E_{K S-D F T}$ is the usual self-consistent Kohn-Sham energy as obtained from the chosen functional and $E_{\text {disp }}$ is a dispersion correction given by the sum of twoand three-body energies

$$
\begin{equation*}
E_{\text {disp }}=E^{(2)}+E^{(3)}, \tag{6.10}
\end{equation*}
$$

with the dominating two-body term

$$
\begin{equation*}
E^{(2)}=\sum_{A B} \sum_{n=6,8,10, \ldots} s_{n} \frac{C_{n}^{A B}}{r_{A B}^{n}} f_{d, n}\left(r_{A B}\right) . \tag{6.11}
\end{equation*}
$$

The first sum runs over all atom pair, $C_{n}^{A B}$ denotes the $n$ th-order dispersion coefficient for atom pair $A B, r_{A B}$ is their interatomic distance, and $f_{d, n}$ is a damping function.

Please have look at http://toc.uni-muenster.de/DFTD3 for more detailed information.

## Chapter 7

## Hartree-Fock and DFT Response Calculations: Stability, Dynamic Response Properties, and Excited States

### 7.1 Functionalities of EscF and Egrad

escf and egrad are designed as efficient tools for response and excited state calculations on large molecules. escf serves to compute the following properties for HF and KS reference states:

- Eigenvalues of the electronic Hessian (stability analysis)
- Frequency-dependent polarizabilities and optical rotations
- Vertical electronic excitation energies
- Transition moments, oscillator and rotatory strengths of electronic excitations $\Rightarrow$ UV-VIS and CD spectra

Spin-restricted closed-shell and spin-unrestricted ground states (except for stability analysis) are supported. The RI- $J$ approximation in conjunction with LDA and GGA functionals is implemented for all properties. Excitation energies and transition moments can be computed either within the full time-dependent HF (TDHF) or time-dependent DFT (TDDFT) formalisms or within the Tamm-Dancoff approximation (TDA).

Excited state first order properties can be evaluated analytically using egrad. They include:

- Gradients of the excited state energy with respect to nuclear positions $\Rightarrow$ Excited state equilibrium structures (jobex), adiabatic excitation energies, emission spectra
- Exited state densities $\Rightarrow$ Charge moments, population analysis
- Excited state force constants by numerical differentiation of gradients (using the script Numforce)

Moreover, analytical gradients of static and frequency-dependent polarizabilities are available from egrad. Together with vibrational normal modes from the aoforce or Numforce they are used to calculate vibrational Raman intensities.

Again, ground states may be spin-restricted closed-shell or spin-unrestricted, RI- $J$ is available, and either full TDDFT/TDHF or the TDA can be used. For further details we refer to a recent review 76].

### 7.2 Theoretical Background

We briefly state the basic working equations in the following, as far as required to understand the program output. For a more detailed treatment of the theory see refs. $77,16,76,78,79$ and refs. therein.
The first-order frequency dependent response of the density matrix can be expanded as

$$
\begin{equation*}
\gamma\left(x, x^{\prime}\right)=\sum_{a i}\left\{X_{a i} \varphi_{i}(x) \varphi_{a}^{*}\left(x^{\prime}\right)+Y_{a i} \varphi_{a}(x) \varphi_{i}^{*}\left(x^{\prime}\right)\right\} \tag{7.1}
\end{equation*}
$$

The (real) expansion coefficients $X_{a i}$ and $Y_{a i}$ are conveniently gathered in a "supervector"

$$
\begin{equation*}
|X, Y\rangle=\binom{X}{Y} \tag{7.2}
\end{equation*}
$$

on $L$, the linear space of products of occupied and virtual ground state MOs $\varphi_{i}(x) \varphi_{a}^{*}\left(x^{\prime}\right)$ plus their complex conjugates. $X$ and $Y$ describe the first-order change of the ground state MOs due to an external perturbation which is represented by $|P, Q\rangle$ on $L$. For example, if an oscillating electric dipole perturbation along the $z$ axis is applied, $|P, Q\rangle=\left|\mu_{z}\right\rangle$, where $\mu$ is the electric dipole operator.

Next we define the $2 \times 2$ "super-matrices"

$$
\Lambda=\left(\begin{array}{cc}
A & B  \tag{7.3}\\
B & A
\end{array}\right), \quad \Delta=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

where the four-index quantities $A$ and $B$ are the so-called "orbital rotation Hessians". Explicit expressions for $A$ and $B$ can be found, e.g., in ref. [16]. The vector $|X, Y\rangle$ is determined as the solution of the TDHF/TDDFT response problem,

$$
\begin{equation*}
(\Lambda-\omega \Delta)|X, Y\rangle=-|P, Q\rangle . \tag{7.4}
\end{equation*}
$$

If $\left|X_{\alpha}, Y_{\alpha}\right\rangle$ arises from an electric dipole perturbation $\left|\mu_{\alpha}\right\rangle$, the electronic dipole polarizability at frequency $\omega$ is

$$
\begin{equation*}
\alpha_{\alpha \beta}(\omega)=-\left\langle X_{\alpha}, Y_{\alpha} \mid \mu_{\beta}\right\rangle, \tag{7.5}
\end{equation*}
$$

$\alpha, \beta \in\{x, y, z\}$. Similarly, if $\left|m_{\alpha}\right\rangle$ is a component of the magnetic dipole moment operator, the optical rotation is 80

$$
\begin{equation*}
\delta_{\alpha \beta}(\omega)=-\frac{c}{3 \omega} \operatorname{Im}\left\langle X_{\alpha}, Y_{\alpha} \mid m_{\beta}\right\rangle, \tag{7.6}
\end{equation*}
$$

where $c$ is the light velocity.
Excitation energies $\Omega_{n}$ are the poles of the frequency-dependent density matrix response. They are thus the zeros of the operator on the left-hand side of Eq. (7.4),

$$
\begin{equation*}
\left(\Lambda-\Omega_{n} \Delta\right)\left|X_{n}, Y_{n}\right\rangle=0 \tag{7.7}
\end{equation*}
$$

The corresponding eigenvectors $\left|X_{n}, Y_{n}\right\rangle$ are the transition density matrices for a given excitation (also called "excitation vectors" in the following). They are required to be normalized according to

$$
\begin{equation*}
\left\langle X_{n}, Y_{n}\right| \Delta\left|X_{n}, Y_{n}\right\rangle=1 \tag{7.8}
\end{equation*}
$$

Transition moments are evaluated by taking the trace with one-particle operators, e.g.,

$$
\begin{equation*}
\boldsymbol{\mu}^{0 n}=\left\langle X_{n}, Y_{n} \mid \boldsymbol{\mu}\right\rangle \tag{7.9}
\end{equation*}
$$

for the electric and

$$
\begin{equation*}
\mathbf{m}^{0 n}=\left\langle X_{n}, Y_{n} \mid \mathbf{m}\right\rangle \tag{7.10}
\end{equation*}
$$

for the magnetic transition dipole moments.
The full TDHF/TDDFT formalism is gauge-invariant, i.e., the dipole-length and dipole-velocity gauges lead to the same transition dipole moments in the basis set limit. This can be used as a check for basis set quality in excited state calculations. The TDA can formally be derived as an approximation to full TDHF/TDDFT by constraining the $Y$ vectors to zero. For TDHF, the TDA is equivalent to configuration interaction including all single excitations from the HF reference (CIS). The TDA is not gauge invariant and does not satisfy the usual sum rules [77], but it is somewhat less affected by stability problems (see below).
Stability analysis of closed-shell electronic wavefunctions amounts to computing the lowest eigenvalues of the electric orbital rotation Hessian $A+B$, which decomposes into a singlet and a triplet part, and of the magnetic orbital rotation Hessian $A-B$. Note that $A-B$ is diagonal for non-hybrid DFT, while $A+B$ generally is not. See refs. 81,15 for further details.
Properties of excited states are defined as derivatives of the excited state energy with respect to an external perturbation. It is advantageous to consider a fully variational Lagrangian of the excited state energy [16],

$$
\begin{align*}
L[X, Y, \Omega, C, Z, W]= & E_{\mathrm{GS}}+\langle X, Y| \Lambda|X, Y\rangle-\Omega(\langle X, Y| \Delta|X, Y\rangle-1) \\
& +\sum_{i a} Z_{i a} F_{i a}-\sum_{p q} W_{p q}\left(S_{p q}-\delta_{p q}\right) . \tag{7.11}
\end{align*}
$$

Here $E_{\mathrm{GS}}$ denotes the ground state energy, $F$ and $S$ are the Fock and overlap matrices, respectively, and indices $p, q$ run over all, occupied and virtual MOs.
First, $L$ is made stationary with respect to all its parameters. The additional Lagrange multipliers $Z$ and $W$ enforce that the MOs satisfy the ground state HF/KS equations and are orthonormal. $Z$ is the so-called $Z$-vector, while $W$ turns out to be the excited state energy-weighted density matrix. Computation of $Z$ and $W$ requires the solution of a single static TDHF/TDKS response equation (7.4), also called coupled and perturbed HF/KS equation. Once the relaxed densities have been computed, excited state properties are obtained by simple contraction with derivative integrals in the atomic orbital (AO) basis. Thus, computation of excited state gradients is more expensive than that of ground state gradients only by a constant factor which is usually in the range of $1 \ldots 4$.
TDHF/TDDFT expressions for components of the frequency-dependent polarizability $\alpha_{\alpha \beta}(\omega)$ can also be reformulated as variational polarizability Lagrangians 82

$$
\begin{align*}
& L^{\alpha \beta}\left[X_{\alpha}, Y_{\alpha}, X_{\beta}, Y_{\beta}, C, Z^{\alpha \beta}, W^{\alpha \beta}\right](\omega) \\
& \quad=\left\langle X_{\alpha}, Y_{\alpha}\right|(\Lambda-\omega \Delta)\left|X_{\beta}, Y_{\beta}\right\rangle+\left\langle X_{\alpha}, Y_{\alpha} \mid \mu_{\beta}\right\rangle+\left\langle\mu_{\alpha} \mid X_{\beta}, Y_{\beta}\right\rangle  \tag{7.12}\\
& \quad+\sum_{i a \sigma} Z_{i a \sigma}^{\alpha \beta} F_{i a \sigma}-\sum_{p q \sigma, p \leq q} W_{p q \sigma}^{\alpha \beta}\left(S_{p q \sigma}-\delta_{p q}\right) .
\end{align*}
$$

The stationary point of $L^{\alpha \beta}(\omega)$ equals to $-\alpha_{\alpha \beta}(\omega)$. The requirement that $L^{\alpha \beta}(\omega)$ be stationary with respect to all variational parameters determines the Lagrange multipliers $Z^{\alpha \beta}$ and $W^{\alpha \beta}$. All polarizability components $\alpha \beta$ are processed simultaneously which allows for computation of polarizability derivatives at the computational cost which is only $2-3$ higher than for the electronic polarizability itself.

### 7.3 Implementation

Without giving details, we discuss features of the implementation in escf and egrad that matter for applications. The interested reader is referred to the refs. given in the program headers as well as ref. 83.

Simultaneous vector iteration. The solutions of Eqs. (7.4) and (7.7) are expanded in a subspace of $L$ which is iteratively expanded (Davidson method 84]). The iteration is stopped when the Euclidean norm of the residual vector is smaller than $10^{-k}$. The default for $k$ is 5 , which usually gives excitation energies accurate to $8-10$ digits and properties accurate to $4-5$ digits ( $k$ can be changed by specifying $\$$ rpaconv $k$ ). Several roots, i.e., several excited states or frequencies can be treated simultaneously, which is very effective and permits the calculation of whole excitation spectra and dispersion curves. During the iteration, the vectors are kept on scratch files vfile_<IR>,wfile_<IR>, and/or rhs_<IR>, where IR denotes an IRREP of the point group (see below). Before the programs terminate, the converged vectors are written onto formatted files $\langle$ type $\rangle\langle\mathrm{IR}\rangle$, where type is an abbreviation
for the type of response calculation performed (cf. \$scfinstab). Given these files in the working directory, escf and egrad calculations can be restarted or continued, e.g., with a larger number of roots.

Integral direct algorithm. In the iterative method outlined above, the supermatrices $A$ and $B$ never need to be set up explicitly; only the products of $A$ and $B$ with some suitable basis vectors are required. These matrix-vector-products are evaluated very efficiently in the AO basis, because the required four-index integrals can be computed "on the fly" and need not be transformed or stored on disk. In addition, prescreening techniques based on rigorous bounds are straightforward to apply. This leads to a low-order scaling $O\left(N^{2}\right)-O(N)$ for the time-determining steps. Due to the similarity to ground state fock matrix construction, the same keywords are used to control these steps as in semi-direct SCF, namely \$thime, \$thize, \$scfintunit, see Chapter 6. The same is true for DFT and RI keywords such as \$dft, \$ridft, \$ricore.

Point group symmetry. escf and egrad can exploit point group symmetry for all finite point groups (with up to 99 -fold symmetry axes, $\rightarrow \$$ symmetry). The response and eigenvalue problems $(7.4)$ and (7.7) decompose into separate problems for each IRREP that are solved independently. For excited state and instability calculations, it is thus necessary to specify the IRREPs to be treated (\$soes, see below). For response calculations, the perturbation is automatically subduced into irreducible components. The overall speedup compared to $C_{1}$ symmetry is approximately $1 / g$, where $g$ denotes the point group order. For spin-restricted closed-shell ground states, spin symmetry is used to further reduce the dimension of the response and eigenvalue problems by a factor of 2 .

Other features. escf and egrad fully support external fields (using the keyword \$electrostatic field; specify geofield on in \$fldopt), point charges (using the keyword \$point_charges), and effective core potentials (using \$ecp). In escf calculations, occupied and virtual MOs can be frozen (using \$freeze).

### 7.4 How to Perform

The most convenient way to set up an escf or egrad calculation is to use the ex option of the last ("general") define menu, see Chapter 4 define will automatically provide most of the keywords discussed below.
A large number of (not necessarily realistic) sample inputs is contained in the escf and egrad subdirectories of the test suite (TURBOTEST directory).

### 7.4.1 Preliminaries

All response calculations require a complete set of converged (occupied and virtual) SCF MOs. It is strongly recommended to use well converged MOs, since the error in the ground-state wavefunction enters linearly in all response properties. Thus, before starting escf or egrad, specify the keywords

```
$scfconv 7
$denconv 1d-7
```

in control, perform a dscf statistics run, if semi-direct integral processing is to be used (see Chapter 3.1), and (re-)run dscf or ridft,
dscf > dscf.out \& or
ridft > ridft.out \& in case of RI- $J$.
The above tight convergence criteria are also recommended for excited state geometry optimizations.

### 7.4.2 Polarizabilities and Optical Rotations

The calculation of dynamic polarizabilities is controlled by the keyword
\$scfinstab dynpol unit
list of frequencies
unit specifies the unit of the following frequencies and may be ev, $\mathrm{nm}, 1 / \mathrm{cm}$, or a.u. (default). The frequencies may be either purely real or purely imaginary. For example, to calculate dynamic polarizabilities at 590 nm and $400 \mathrm{i} \mathrm{nm} \mathrm{(i} \mathrm{is} \mathrm{the}$ imaginary unit), specify

```
$scfinstab dynpol nm
 5 9 0
 4 0 0 ~ i
```

and run escf,
escf > escf.out \& .

The resulting polarizabilities and rotatory dispersions are given in a.u. in the program output (escf.out in the above example).
The conversion of the optical rotation in a.u. to the specific rotation $[\alpha]_{\omega}$ in $\mathrm{deg} \cdot[\mathrm{dm} \cdot(\mathrm{g} / \mathrm{cc})]^{-1}$ is given in Eq. (15) of ref. 80].

$$
\begin{equation*}
[\alpha]_{\omega}=C \cdot \delta(\omega) \tag{7.13}
\end{equation*}
$$

where $C=1.343 \cdot 10^{-4} \omega^{2} / M$ with $M$ being the the molar mass in $\mathrm{g} / \mathrm{mol}, \omega$ the frequency in $\mathrm{cm}^{-} 1$, and $\delta(\omega)$ is $1 / 3$ trace of the electronic rotatory dispersion tensor given in atomic units.
Please note, that $\delta(\omega)$ has the wrong sign in older TURBOMOLE versions. It has been corrected in version 6.2.

Note that convergence problems may occur if a frequency is close to an electronic excitation energy. This is a consequence of the (physical) fact that the response diverges at the excitation energies, and not a problem of the algorithm.
Static polarizabilities are calculated most efficiently by specifying

```
$scfinstab polly
```

before starting escf.

### 7.4.3 Stability Analysis

Stability analysis of spin-restricted closed-shell ground states is enabled by

## \$scfinstab singlet

for singlet instabilities,

```
$scfinstab triplet
```

for triplet instabilities (most common), and

## \$scfinstab non-real

for non-real instabilities.
After that, it is necessary to specify the IRREPs of the electronic Hessian eigenvectors ("orbital rotations") to be considered. Without additional knowledge of the system one usually needs to calculate the lowest eigenvalue within every IRREP:

## \$soes all 1

Positivity of the lowest eigenvalues in all IRREPs is sufficient for stability of the ground state solution. If one is interested in, say, the lowest eigenvalues in IRREPs eg and $t 2 \mathrm{~g}$ only, one may specify:

```
$soes
```

eg 1
t2g 1

Triplet instabilities in the totally symmetric IRREP indicate open shell diradical states (singlet or triplet). In this case, start MOs for spin-symmetry broken UHF or UKS ground state calculation can be generated by specifying
\$start vector generation
escf will provide the start MOs ( $\rightarrow$ \$uhfmo_alpha, \$uhfmo_beta) as well as occupation numbers $(\rightarrow$ \$alpha shells, \$beta shells) for a spin-unrestricted calculation with equal numbers of $\alpha$ and $\beta$ electrons (pseudo-singlet occupation).

### 7.4.4 Vertical Excitation and CD Spectra

The calculation of excited states within the TDHF (RPA)/TDDFT approach is enabled by

## \$scfinstab rpas

for closed-shell singlet excitations,
\$scfinstab rpat
for closed-shell triplet excitations, and

## \$scfinstab urpa

for excitations out of spin-unrestricted reference states.
If it is intended to use the TDA instead, specify

```
$scfinstab ciss
```

for closed-shell singlet excitations,

## \$scfinstab cist

for closed-shell triplet excitations, and

## \$scfinstab ucis

for excitations out of spin-unrestricted reference states.
Next, the IRREPs of the excitations need to be defined, which is again accomplished using \$soes. For example, to calculate the 17 lowest excitations in IRREP b1g, the 23 lowest excitations in IRREP eu, and all excitations in IRREP t2g, use

## \$soes

b1g 17
eu 23
t2g all
and run escf.
Note that \$soes specifies the IRREP of the excitation vector which is not necessarily identical to the IRREP of the excited state(s) involved. In general, the IRREP(s) of the excitation(s) from the ground to an excited state is given by the direct product of the IRREPs of the tow states. For example, to calculate the first $A_{2}$ state in a $C_{2 v}$-symmetric molecule with a $B_{2}$ (open-shell) ground state, it is necessary to specify
\$soes
b1 1
The number of excitations that have to be calculated in order to cover a certain spectral range is often difficult to determine in advance. The total number of excitations within each IRREP as provided by the define ex menu may give some hint. A good strategy is to start with a smaller number of excitations and, if necessary, perform a second escf run on a larger number of states using the already converged excitation vectors as input.

To compute absorption and CD spectra, it is often sufficient to include optically allowed transitions only. This leads to substantial reduction of computational effort for molecules with higher symmetry. For example, in the UV-VIS spectrum of an $O_{h}$ symmetric molecule, only $t_{1 u}$ excitations are optically allowed. The IRREPs of the electric and magnetic dipole moments as well as of the electric quadrupole moment are displayed automatically in the define ex menu.
If a large number of states is to be calculated, it is highly recommended to provide extra memory by specifying
\$rpacor $m$
the integer $m$ being the core memory size in megabytes (default is 20 ). The larger $m$, the more vectors can be processed simultaneously without re-calculation of integrals. As a rule of thumb, $m$ should be ca. $90 \%$ of the available main memory. If RI- $J$ is used (\$ridft), it is recommended to set \$ricore to a small value and \$rpacor to a large value if the number of states is large, and vice versa if it is small.
By specifying

```
$spectrum unit and/or
```

\$cdspectrum unit
a list of excitation energies and oscillator and/or rotatory strengths of the optically allowed transitions is written onto file spectrum and/or cdspectrum. As above, unit specifies the energy unit and may be ev, nm, $1 / \mathrm{cm}$, or a.u. (default). The files spectrum and cdspectrum may conveniently be used for further processing, e.g., using a plotting program such as Gnuplot.

### 7.4.5 Excited State Geometry Optimizations

The input for computing excited state gradients and properties using egrad is exactly the same as for an excited state calculation using escf, see the previous section. Gradients and properties are calculated only for one state at a time. By default, this is the highest excitation specified by $\$$ soes (only one IRREP is allowed). Sometimes, e.g. close to excited state intersections, it may be necessary to include higher excited states in the initial excitation vector calculation to prevent root flipping. This is accomplished using
\$exopt $n$
which explicitly enforces treatment of the $n$-th state; $n$ must be less or equal the number of states specified in \$soes.

After the input for the ground and excited state calculations has been set up, an excited state geometry optimization can be started by issuing the command
nohup jobex -ex \&
The option -ex forces jobex to call egrad instead of grad (or rdgrad if -ri is also specified). In each geometry step, the excitation energy is written on the fourth column in \$energy, and the data group \$last excitation energy change is updated. Otherwise, the excited state optimization proceeds in exactly the same way as a ground state optimization (see Chapter 3.1).

### 7.4.6 Excited State Force Constant Calculations

Excited state vibrational frequencies can be calculated by numerical differentiation of analytic gradients using Numforce (see Chapter 11). A Numforce calculation for an excited state may be started by the command

```
nohup NumForce -ex n > force.out &
```

where $n$ is the number of the excited state in $C_{1}$ symmetry. In order to determine $n$, it is recommended to perform an escf calculation in $C_{1}$ symmetry. Note that numerical calculation of excited state force constants is likely to fail if there are other states nearby (in $C_{1}$ ), because the roots may flip when the molecule is distorted. Note also that it may be necessary to include higher excited states (using \$exopt, see above) in $C_{1}$ calculations of molecules with higher symmetry in order to enforce convergence to the correct state. In any case, it should be checked that the energy change due to the displacements (available in the numforce/KraftWerk/*.log files) is reasonably small.
For a Numforce run, the convergence criteria should be tightened. It is recommended to use at least

## \$scfconv 8

in all Numforce calculations. Other Numforce options such as -central, -d, -np work in exactly the same way as they do for ground states.

### 7.4.7 Polarizability Derivatives and Raman Spectra

Calculations of polarizability derivatives by the egrad program use the same specifications in the \$scfinstab data group as polarizability calculations by escf.

```
$scfinstab polly
```

specifies derivatives of the static polarizability, while
\$scfinstab dynpol unit
frequency
requests derivatives of the dynamical polarizability at the given frequency. Note that, unlike polarizability calculations, multiple frequencies are not allowed. Polarizability derivatives have to be projected onto vibrational normal modes to obtain Raman intensities, see Chapter 11 for further details.

## Chapter 8

## Second-order Møller-Plesset Perturbation Theory

### 8.1 Functionalities of Mpgrad, Rimp2, and Ricc2

TURBOMOLE offers three possibilities for the calculation of MP2 data. A "conventional" implementation [85], mpgrad, based on the calculation of four-center integrals (not further developed for several years), and two treatments within the resolution-of-the-identity (RI) approximation: the first and stand-alone implementation 8, rimp2, and within the coupled-cluster program [10, ricc2.
Functionality of mpgrad:

- Calculation of MP2 energies and/or MP2 gradients for RHF and UHF wave functions.
- The frozen core approximation (possibility to exclude low-lying orbitals from the MP2 treatment) is implemented only for MP2 energies.
- Exploitation of symmetry of all point groups.
- Can be used sequentially or parallel.
- Can be combined with the COSMO solvation model (see chapter 14 for details). (Presently restricted to sequential calculations.)

Functionality of rimp2:

- Calculation of MP2 energies and/or gradients for RHF and UHF wave functions within the efficient RI-approximation (RI-MP2).
- The frozen core approximation is implemented for both RI-MP2 energies and gradients.
- RI-MP2 needs optimised auxiliary basis sets, which are available for all TURBOMOLE standard basis sets (SVP, TZVP, TZVPP, QZVPP) as well as for the (aug-)cc-p( wC ) VXZ ( $\mathrm{X}=\mathrm{D}, \mathrm{T}, \mathrm{Q}, 5$ ) basis sets series (for Al-Ar also for the (aug-)cc-p(wC)V(X+d)Z series).
- Exploitation of symmetry of all point groups.
- Can only be used for sequential calculations.
- Can be combined with the COSMO solvation model (see chapter 14 for details).

Functionality of ricc2:

- Includes most of the above rimp2 functionalities with the exception that it can not (yet) be used with the COSMO solvation model.
- Runs sequentially and parallel (with MPI or OpenMP) and supports at the MP2 level all point groups and can in geometry optimizations and vibrational frequency calculations (with NumForce) combined with RI-JK-SCF for the Hartre-Fock reference calculation.
- Contains an implementation of explicitly correlated MP2-F12 methods (presently restricted to energies and the $C_{1}$ point group).
- Can for open-shell calculations be used with UHF and single-determinant highspin ROHF reference wavefunctions. (ROHF-MP2 presently limited to energies.)
- Energies and gradients for the spin-component scaled SCS- and SOS-MP2 approaches, including a Laplace-transformed implementation of SOS-MP2 with $\mathcal{O}\left(\mathcal{N}^{4}\right)$ scaling computation costs.
- See Chapter 9 for further details.


### 8.2 Some Theory

Second-order Møller-Plesset Perturbation Theory (MP2) corrects errors introduced by the mean-field ansatz of the Hartree-Fock (HF) theory, the perturbation operator is just the difference of the exact and the HF Hamiltonian. One straightforward obtains the MP2 energy:

$$
\begin{equation*}
E_{M P 2}=\frac{1}{4} \sum_{i a j b}\left[t_{i j}^{a b}\langle i j \| a b\rangle\right], \tag{8.1}
\end{equation*}
$$

with the t-amplitudes

$$
\begin{equation*}
t_{i j}^{a b}=\frac{\langle i j||a b\rangle}{\epsilon_{i}+\epsilon_{j}-\epsilon_{a}-\epsilon_{b}}, \tag{8.2}
\end{equation*}
$$

$i$ and $j$ denote occupied, $a$ and $b$ virtual orbitals, $\epsilon_{p}$ are the corresponding orbital energies, $\langle i j||a b\rangle=\langle i j \mid a b\rangle-\langle i j \mid b a\rangle$ are four-center-two-electron integrals in a commonly used notation.
MP2 gradients (necessary for optimisation of structure parameters at the MP2 level) are calculated as analytical derivatives of the MP2 energy with respect to nuclear coordinates; calulation of these derivatives also yields the first order perturbed wave function, expressed as "MP2 density matrix", in analogy to the HF density matrix. MP2 corrections of properties like electric moments or atomic populations are obtained in the same way as for the HF level, the HF density matrix is just replaced by the MP2 density matrix.
The "resolution of the identity (RI) approximation" means expansion of products of virtual and occupied orbitals by expansions of so-called "auxiliary functions". Calculation and transformation of four-center-two-electron integrals (see above) is replaced by that of three-center integrals, which leads to computational savings of rimp2 (compared to mpgrad) by a factor of ca. 5 (small basis sets like SVP) to ca. 10 (large basis sets like TZVPP) or more (for cc-pVQZ basis sets). The errors (differences to mpgrad) of rimp2 in connection with optimised auxliliary basis sets are small and well documented [9, 86]. The use of the mpgrad modul is recommended rather for reference calculations or if suitable auxiliary basis sets are not available.

### 8.3 How to Prepare and Perform MP2 Calculations

## Prerequisites

Calculations with mpgrad, rimp2 or ricc2 require

- a converged SCF calculation with the one-electron density convergence threshold set to \$denconv 1.d-7 or less
- the maximum core memory the program is allowed to allocate should be defined in the data group \$maxcor (in MB); the recommended value is ca. $3 / 4$ of the available (physical) core memory at most.
- orbitals to be excluded from the correlation treatment have to be specified in data group \$freeze
- the calculation of MP2 gradients is omitted by adding the flag \$mp2energy to the control file; in this case only MP2 energy is calculated.

Calculations with rimp2 and ricc2 moreover require

- an auxiliary basis defined in the data group \$cbas

This is not needed for mpgrad, but here one needs

- a specification for scratch files and their size in data group \$mointunit (see Section 15.2.12
- and the number of passes for integral evaluations and transformations in data group \$traloop

For explicitly-correlated MP2-F12 calculations one needs-depending the details of the applied approximations-additionally a so-called complementary auxiliary basis set (CABS, defined in \$cabs) and a RI-SCF auxiliary basis set defined in $\$ j k b a s$.

## Calculations with rimp2 and ricc2

1. RI-MP2 calculations require the specification of auxiliary basis sets (\$cbas) and a converged SCF calculation with the one-electron density convergence threshold set to \$denconv 1.d-7 or less. In addition, the options \$freeze (frozen core approximation) and \$maxcor (maximum core memory usage) should be set. All these settings can be done during the input generation with the program define under the entry mp2\cc2 of last main menu.
2. Alternatively, the interactive program Rimp2prep can be used: This program sets default values for auxiliary basis sets (data group \$cbas), for frozen core orbitals (data group \$freeze, all orbitals with energies below -3 a.u. are suggested to be frozen) and for the amount of memory to be allocated (\$maxcor. These defaults can be confirmed with return or modified, if desired. Note: the amount of memory to be allocated determines the number of multiple passes and thus the efficiency of rimp2.
It is also possible to run Rimp2prep directly after define.
3. The ricc2 program requires the data group:
\$ricc2
mp2
geoopt model=mp2
(Where the last line should only be included if the calculation of gradients is needed e.g. in geometry optimizations.) This can be prepared with define in the menu mp2\cc2.
4. For explicitly-correlated MP2-F12 calculations with ricc2 also the data group $\$$ rir12 is needed.
5. Start a single rimp2 calculation with the command ricc2 or rimp2.
6. For optimisation of structure parameters at the RI-MP2 level use the command jobex -level cc2 or jobex -ri -level mp2. For geometry optimizations with RI-JK-SCF as reference for RI-MP2 with the ridft and ricc2 binaries the additional option -rijk has to be given.
7. The combination of RI-MP2 with RI-JK-SCF can lead to significant computational savings in particular for geometry optimizations for small and medium
sized molecules with large basis sets (quadruple- $\zeta$ and beyond) or basis sets with diffuse functions (e.g. the aug-cc-pVXZ basis set families). For large molecules with TZVPP or similar basis sets, conventional direct SCF calculations usually more efficient.
8. With ricc2 spin-component scaled SCS- or SOS-RI-MP2 calculations can be carried out by adding in the $\$$ ricc2 data group the line
```
scs cos=1.2d0 css=0.3333d0
```

where the two parameters are the scaling factors for, respectively, the oppositeand same-spin contribution. The specification of the scaling factors is optional; the default values are $\cos =6 / 5$ and css $=1 / 3$ as recommended by S. Grimme in J. Chem. Phys. 118 (2003) 9095. The abbreviation sos can be used for SOS-MP2 calculations with cos=1.3 and css=0.0 (Y., Jung, R.C. Lochan, A.D. Dutoi, and M. Head-Gordon, J. Chem. Phys. 121 (2004) 9793.).
9. For technical recommendations and additional options for parallel RI-MP2 calculations with the ricc2 program see Secs. 3.2 and 9.5 .

## Calculations with mpgrad

1. Add \$denconv 1.d-7 to the control file and perform a dscf run.
2. If any orbitals are decided to be excluded from MP2 treatment, add data group \$freeze manually to the control file, see also Section 15.2.12.
3. For preparation of an mpgrad run use the script Mp2prep:
mp2prep -e/g -m memory -p discspace [scratch file directory]
As an example, with the command
mp2prep -e -m 100 -p 1000 /work
an MP2-energy calculation is prepared, the amount of available core memory is restricted to 100 MB , the MOs are blocked, so that integral scratch fileslocated in the directory / work - do not need more than 1000 Mb . The number of blocks, i.e. the number of passes with repeated integral evaluations, is written to the control file (\$traloop) as well as the specification of scratch files (\$mointunit, see Section 15.2.12). Note: less disc space means more passes and thus lower efficiency of mpgrad, but due the technical limitations discspace should be limited to values $<16 \mathrm{~Gb}$ to avoid integer overflow errors. Settings obtained by mp2prep may be changed manually. You may change the number of passes in \$traloop by editing the control file (e.g. if the originally intended disc space is not available). To adapt the size of scratch files add \$statistics mpgrad to control file and start an mpgrad statistics run with the command mpgrad.
4. Start a single mpgrad calculation with the command mpgrad.
5. For optimisation of structure parameters at the (non-RI-) MP2 level use the command jobex -level mp2. Note, that the frozen core approximation is ignored in this case.

### 8.4 General Comments on MP2 Calculations, Practical Hints

## Recommendations

- It is well-known, that perturbation theory yields reliable results only, if the perturbation is small. This is also valid for MP2, which means, that MP2 improves HF results only, if HF already provides a fairly good solution to the problem. If HF fails, e.g. in case of partially filled $d$-shells, MP2 usually will also fail and should not be used in this case.
- MP2 results are known to converge very slowly with increasing basis sets, in particular slowly with increasing $l$-quantum number of the basis set expansion. Thus for reliable results the use of TZVPP basis sets (or higher) is recommended. When using SVP basis sets a qualitative trend can be expected at the most. Basis sets much larger than TZVPP usually do not significantly improve geometries of bonded systems, but still can improve the energetic description. For non-bonded systems larger basis sets (especially, with more diffuse functions) are needed.
- It is recommended to exclude all non-valence orbitals from MP2 calculations, as neither the TURBOMOLE standard basis sets SVP, TZVPP, and QZVPP nor the cc-pVXZ basis set families (with $\mathrm{X}=\mathrm{D}, \mathrm{T}, \mathrm{Q}, 5,6$ ) are designed for correlation treatment of inner shells (for this purpose polarisation functions for the inner shells are needed). The default selection for frozen core orbitals in Define (orbitals below -3 a.u. are frozen) provides a reasonable guess. If core orbitals are included in the correlation treatment, it is recommended to use basis sets with additional tight correlation functions as e.g. the cc-pwCVXZ and ccpCVXZ basis set families.
- RI-MP2: We strongly recommend the use of auxiliary basis sets optimized for the corresponding (MO) basis sets.

Fast RI-MP2 calculations with the ricc2 program: As pointed out above, the ricc2 program includes (almost) all functionalities of the rimp2 program. Because of slightly refined batching algorithms, screening and symmetry treatment the ricc2 program is usually somewhat faster than rimp2. This is in particular the case when the molecular point group is $D_{2 h}$ or a subgroups thereof and a significant number of atoms is positioned on symmetry elements (e.g. planar molecules) and
when, because of memory restrictions, the rimp2 program needs many passes for the integral evaluation.
All what is needed for a RI-MP2 gradient calculation with the ricc2 program is a \$ricc2 data group with the entry geoopt model=mp2. If you want only the RIMP2 energy for a single point use as option just mp2. To activate in MP2 energy calculations the evaluation of the $D_{1}$ diagnostic (for details see Sec. 9.1). use instead mp2 d1diag. (Note that the calculation of the $D_{1}$ diagnostic increases the costs compared to a MP2 energy evaluation by about a factor of three.)

## Comments on the Output

- Most important output for ricc2, rimp2, and mpgrad are of course MP2(+HF) energies (written standard output and additionally to file energy) and MP2(+HF) gradients (written to file gradient).
- In case of MP2 gradient calculations the modules also calculate the MP2 dipole moment from the MP2 density matrix (note, that in case of mpgrad frozen core orbital specification is ignored for gradient calculations and thus for MP2 dipole moments).

Further output contains indications of the suitability of the (HF+MP2) treatment.

- As discussed above, reliable (HF +MP 2 ) results are in line with small MP2 corrections. The size of the MP2 correction is characterised by the t -amplitudes, as evident from the above equations. mpgrad by default plots the five largest t -amplitudes as well as the five largest norms of t -amplitudes for fixed $i$ and $j$, rimp2 does the same upon request, if \$tplot is added to control file. More or less than five $t$-amplitudes will be plotted for $\$$ tplot $n$, where $n$ denotes the number of largest amplitudes to be plotted. It is up to the user to decide from these quantities, whether the (SCF +MP 2 ) treatment is suited for the present problem or not. Unfortunately, it is not possible to define a threshold, which distinguishes a "good" and a "bad" MP2-case, since the value of individual $t$-amplitudes are not orbital-invariant, but depend on the orbital basis (and thereby under certain circumstances even on the orientation). Example: the largest norm of t -amplitudes for the Cu -atom ( $d^{10} s^{1}$, "good" MP2-case) amounts to ca. 0.06, that of the Ni-atom ( $d^{8} s^{2}$, "bad" MP2 case) is ca. 0.14.
- A more descriptive criterion may be derived from the MP2 density matrix. The eigenvalues of this matrix reflect the changes in occupation numbers resulting from the MP2 treatment, compared to the SCF density matrix, where occupation numbers are either one (two for RHF) or zero. Small changes mean small corrections to HF and thus suitability of the (HF+MP2) method for the given problem. In case of gradient calculations rimp2 displays by default the largest eigenvalue of the MP2 density matrix, i.e. the largest change in occupation numbers (in \%). All eigenvalues are shown, if \$mp2occ is added to the control file. For main group compounds largest changes in occupation
numbers of ca. $5 \%$ or less are typical, for $d^{10}$ metal compounds somewhat higher values are tolerable.
- A similar idea is pursued by the $D_{2}$ and $D_{1}$ diagnostics [87,88] which is implemented in ricc2. $D_{2}$ is a diagnostic for strong interactions of the HF reference state with doubly excited determinants, while $D_{1}$ is a diagnostic for strong interactions with singly excited determinants.


### 8.5 RI-MP2-F12 Calculations

To obtain the F12 correction to the MP2 energy, the data group \$rir12 must be added to the control file. A typical run will include the input:

```
$ricc2
 mp2 energy only
$rir12
```

The MP2-F12 ground-state energy is

$$
\begin{equation*}
E_{\mathrm{MP} 2-\mathrm{F} 12}=E_{\mathrm{MP} 2}+E_{\mathrm{F} 12}, \tag{8.3}
\end{equation*}
$$

where $E_{\mathrm{MP} 2}$ is the conventional MP2 energy and $E_{\mathrm{F} 12}$ the correction from explicitlycorrelated theory. The second term contains contributions from explicitly-correlated geminal basis functions of the form

$$
\begin{equation*}
\hat{Q}_{12} f_{12}|i j\rangle, \tag{8.4}
\end{equation*}
$$

where $|i j\rangle$ is a two-electron determinant of occupied (semi-)canonical Hartree-Fock spin orbitals, $f_{12}$ is a correlation factor, which can be either linear $r_{12}$ (in this case, the approach is denoted MP2-R12 instead of MP2-F12) or a function of $r_{12}$, and $\hat{Q}_{12}$ defines the doubles excitation space covered by the geminals (it also ensures strong orthogonality to the occupied orbitals). Usually $\hat{Q}_{12}$ is chosen to be $\hat{Q}_{12}=$ $\left(1-\hat{O}_{1}\right)\left(1-\hat{O}_{2}\right)-\hat{V}_{1} \hat{V}_{2}$, where $\hat{O}_{\mu}=\sum_{k}\left|\varphi_{k}(\mu)\right\rangle\left\langle\varphi_{k}(\mu)\right|$ is the projection operator onto the space spanned by the occupied spin orbitals $\varphi_{k}$ and $\hat{V}_{\mu}=\sum_{a}\left|\varphi_{a}(\mu)\right\rangle\left\langle\varphi_{a}(\mu)\right|$ is the projector onto the virtual spin orbitals.
The F12 correction is obtained by minimizing the functional

$$
\begin{equation*}
F_{\mathrm{F} 12}=\sum_{i<j}\left\{\mathbf{c}_{i j}^{T} \mathbf{B}_{i j} \mathbf{c}_{i j}+2 \mathbf{c}_{i j}^{T} \mathbf{v}_{i j}\right\} \tag{8.5}
\end{equation*}
$$

with respect to the amplitudes collected in the vector $\mathbf{c}_{i j}$. The vectors $\mathbf{v}_{i j}$ and the matrices $\mathbf{B}_{i j}$ are defined as

$$
\begin{align*}
\mathbf{v}_{i j}(k l) & =\langle k l| f_{12} \hat{Q}_{12} r_{12}^{-1}|i j\rangle,  \tag{8.6}\\
\mathbf{B}_{i j}(k l, m n) & =\langle k l| f_{12} \hat{Q}_{12}\left(\hat{f}_{1}+\hat{f}_{2}-\varepsilon_{i}-\varepsilon_{j}\right) \hat{Q}_{12} f_{12}|m n\rangle, \tag{8.7}
\end{align*}
$$

in the spin-orbital formalism ( $m, n$ denote spin orbitals and $|m n\rangle$ is a two-electron determinant). $\hat{f}_{\mu}$ is the Fock operator for electron $\mu$ and $\varepsilon_{k}$ is a (semi-)canonical Hartree-Fock orbital energy.

A MP2-F12 calculation is defined through a number of choices concerning the nature of the geminals ( $f_{12}$ and $\hat{Q}_{12}$ ), the geminal excitation space (ijkl or ijij ) and approximations in computing the $B$ matrix (GBC, EBC, $\left[\hat{T}, f_{12}\right]$ ). These choices correspond to keywords in the \$rir12 data group, explained below.
To run a MP2-F12 calculation, one has to select the auxiliary basis sets cbas, cabs and optionally jkbas. The ricc2 program uses the robust fitting techniques of Ref. [89] for the F12 integrals and the cbas basis is used for both the F12 and the usual MP2 Coulomb integrals. For the density fitting of the Coulomb and exchange matrices of the Fock matrix, the jkbas will be used instead of the cbas basis if it is included in the control file (this is recommended and is achieved using the rijk menu in define). For the RI approximation of the 3 - and 4 -electron integrals as sums of products of 2-electron integrals, intrinsic to the F12 method, the complementary auxiliary basis (CABS) approach is used 90 . If define is used to set up the cabs basis, the library cabasen is searched. This library contains the optimised cabs basis sets [91] for the cc-pVXZ-F12 basis sets of Peterson et al. [92]. For other basis sets, the auxilliary basis in the library cabasen is identical with the auxilliary basis in the library cbas.
The $\$$ rir 12 data group may be set by choosing the $f 12$ option in the cc menu when running define. This command activates the $f 12 \mathrm{menu}$, where the default options may be changed if desired:

```
Orbital basis : cc-pVTZ-F12
Cardinal number : T
Recommended exponent: 1.0000
Actual exponent: 1.0000
```

INPUT MENU FOR MP2-F12 CALCULATIONS

```
ansatz : CHOOSE ANSATZ 2 [1,2*,2]
r12model : CHOOSE MODEL B [A,B]
comaprox : COMMUTATOR APPROXIMATION
cabs : CABS ORTHOGONALIZATION
examp : CHOOSE FORMULATION
r12orb : CHOOSE GEMINAL ORBITALS
corrfac : CHOOSE CORRELATION FACTOR
LCG [R12,LCG]
cabsingles: CABS SINGLE EXCITATIONS on [on,off]
pairenergy: PRINT OUT PAIRENERGIES off [on,off]
slater : SLATER EXPONENT 1.0000
```

```
* / end : write $rir12 to file and leave the menu
& : go back - leaving $rir12 unchanged...
```

ansatz corresponds to the choice of $\hat{Q}_{12}$. Almost all modern MP2-F12 calculations use ansatz 2 (default), which gives much improved energies over ansatz 1 (see Ref. 93] for details). The principal additional cost of using ansatz 2 over ansatz 1 is concerned with the coupling between the F12 and conventional amplitudes. This is avoided by choosing $2 *$, which corresponds to neglecting EBC (Extended Brillouin Condition) terms in the Fock matrix elements.
r12model is the method of computing the matrices $\mathbf{B}_{i j}$ (see Ref. [93] for details). The cost and accuracy increases from A to B. It is recommended to use B (default). The energies computed using A are then also printed out in the output.
comaprox is the method for approximately computing the integrals for the operator $\left[\hat{T}, f_{12}\right]$, where the matrix representations of $\mathrm{F}+\mathrm{K}$ or $\mathrm{T}+\mathrm{V}$ are used. $\mathrm{F}+\mathrm{K}$ (the core Hamiltonian plus Coulomb term) is recommended and is the default.
cabs refers to the method of orthogonalising the orbitals in the complementary auxiliary basis. Singular-value decomposition (svd) or Cholesky decomposition (cho) are available. svd is recommended and is the default, with a threshold of $1.0 \mathrm{~d}-08$. The basis set used for CABS is set from the cc menu.
examp refers to the choice of excitation space. inv is the orbital-invariant merhod of Ref. [94, with amplitudes $c_{i j}(k l)$. noinv is the original orbital-dependent diagonal "ijij" method of Ref. 94, with amplitudes $c_{i j}(i j)$ (not recommended, unless in combination with localised orbitals). fixed is the (diagonal and orbital-invariant) rational generator approach of Ref. [95, where the F12 amplitudes are not optimised but predetermined using the coalescence conditions (default).
local controls which orbitals are used in the calculation. hf means that (semi-)canonical Hartree-Fock orbitals are used (default). rohf means that ROHF orbitals are used. For calculations on closedshell systems using r12model A, localised orbitals may be used. Both the Boys [96] and Pipek-Mezey [97] methods are available for localisation of the orbitals.
corrfac corresponds to the choice of correlation factor $f_{12}$ in the geminal basis functions. R12 results in a calculation using linear- $r_{12}$ and

LCG results in a calculation using the Slater-type correlation factor with exponent $1.4 a_{0}^{-1}$, represented as a linear combination of six Gaussians (see Ref. [98]). Note that the exponents 0.9, 1.0 and 1.1 $a_{0}^{-1}$ are recommended for use with the cc-pVXZ-F12 basis sets 92 .
cabsingles switches on/off the calculation of a second-order correction to the Hartree-Fock energy by accounting for single excitations into the complementary auxiliary basis set (CABS). The single excitations into the CABS basis can be computed without extra costs if the CABS Fock matrix elements are required anyway for the F12 calculation (i.e., for ansatz 2, approximation B or comaprox $\mathrm{F}+\mathrm{K}$ ). The computation of CABS singles cannot be switched off if it is free of costs.
pairenergy controls whether or not the F12 contribution to the MP2 pair energies appear in the output (default off).

Further options:
corrfac LCG refers to a further data group for the definition of the correlation factor. When define is used, the default is

```
$lcg
 nlcg 6
 slater 1.4000
```

The nature of the LCG correlation factor may be changed by editing this data group in the control file. For example, to use a Slater-type correlation factor with exponent $1.0 a_{0}^{-1}$, represented as a linear combination of three Gaussians, use

```
$lcg
 nlcg 3
 slater 1.0000
```

Alternatively, the exponents and coefficients of the fit may be given explicitly:

```
$lcg
 nlcg 3
 expo1 coef1
 expo2 coef2
 expo3 coef3
```

MP2-F12 calculations may be combined with Grimme's SCS approach (S. Grimme, J. Chem. Phys. 118 (2003) 9095.) by inserting scs in \$ricc2,

```
$ricc2
 mp2 energy only
 scs
```

In this case, the SCS parameters $\cos =6 / 5$ and $\operatorname{css}=1 / 3$ are used. Also individual scaling factors for the same-spin and opposite-spin contributions may be defined, see Section 9.6

For open-shell calculations, two choices of the examp fixed method are available. These are controled by a keyword in the \$rir12 data group

```
ump2fixed full [diag,full]
```

These differ in the treatment of the $\alpha \beta$ block, where either only the diagonal excitations enter (with amplitude 0.5) diag, or the equivalent of the spin-adapted singlet and triplet pair excitations enter (as far as possible) full. Note that the diag method with UMP2-F12 yields a result different to that of fixed MP2-F12, even for identical RHF and UHF determinants. However, the diag method is somewhat less expensive than the full method.
Recommendations for orbital and auxiliary basis sets:
The best orbital basis sets to use for MP2-F12 calculations are probably the cc-pVXZ-F12 basis sets, specially optimised for MP2-F12 calculations 92] for the atoms $\mathrm{H}, \mathrm{He}, \mathrm{B}-\mathrm{Ne}$ and $\mathrm{Al}-\mathrm{Ar}$. In conjunction with these cc-pVXZ-F12 basis sets, we recommend to use the optimised cc-pVXZ-F12 sets of Yousaf and Peterson [91] as cabs. Furthermore, cbas and jkbas basis sets can be selected from the cbasen and jkbasen libraries, respectively, using the alias cc-pVXZ-F12 (a jkbas is currently not available for He , Ne and Ar ). This alias points to the corresponding aug-cc$p w C V(X+1) Z$ cbas and aug-cc-pV(X +1$) \mathrm{Z}$ jkbas. These recommendations are on the side of caution and are likely to be refined as more experience is gained 99,100 , 101.

For atoms other than H, He, B-Ne and Al-Ar, optimised F12 basis sets are not yet available. In this case, basis sets must be selected and/or optimised carefully. It is advised to contact the Theoretical Chemistry Group in Karlsruhe for support (e-mail to: klopper@kit.edue).

### 8.6 Laplace-transformed SOS-RI-MP2 with $\mathcal{O}\left(\mathcal{N}^{4}\right)$ scaling costs

The ricc2 module contains since release 6.1 a first implementation of SOS-MP2 which exploits the RI approximation and a Laplace transformation of the orbital energy denominators

$$
\begin{equation*}
\frac{1}{\epsilon_{a}+\epsilon_{b}-\epsilon_{i}-\epsilon_{j}}=\int_{0}^{\infty} e^{-\left(\epsilon_{a}+\epsilon_{b}-\epsilon_{i}-\epsilon_{j}\right) t} d t \approx \sum_{\alpha=1}^{n_{L}} w_{\alpha} e^{-\left(\epsilon_{a}+\epsilon_{b}-\epsilon_{i}-\epsilon_{j}\right) t_{\alpha}} \tag{8.8}
\end{equation*}
$$

to achieve an implementation with $\mathcal{O}\left(\mathcal{N}^{4}\right)$ scaling costs, opposed to the conventional $\mathcal{O}\left(\mathcal{N}^{5}\right)$ scaling implementation. In particular for large molecules the Laplacetransformed implementation can reduce a lot the computational costs of SOS-MP2 calculations without loss in accuracy.
The Laplace-transformed implementation for SOS-MP2 calculations is activated with the input

```
$laplace
 conv=5
```

where the parameter conv is a convergence threshold for the numerical integration in Eq. (8.8). A value of conv=5 means that the numerical integration will be converged to a root mean squared error of $\approx 10^{-5}$ a.u.
Whether the conventional or the Laplace-transformed implementation will be more efficient depends firstly on the system size (the number of occupied orbitals) and secondly on the required accuracy (the number of grid points for the numerical integration in Eq. (8.8)) and can be understood and estimated from the following considerations:

- The computational costs for the most expensive step in (canonical) RI-MP2 energy calculations for large molecules requires $\frac{1}{2} O^{2} V^{2} N_{x}$ floating point multiplications, where $O$ and $V$ are, respectively, the number occupied and virtual orbitals and $N_{x}$ is the number of auxiliary functions for the RI approximation. For the LT-SOS-RI-MP2 implementation the most expensive step involves $n_{L} O V N_{x}^{2}$ floating point multiplications, where $n_{L}$ is the number of grid points for the numerical integration. Thus, the ratio of the computational costs is approximately

$$
c o n v: L T \approx \frac{\frac{1}{2} O^{2} V^{2} N_{x}}{n_{L} O V N_{x}^{2}}=\frac{O V}{2 n_{L} N_{x}} \approx O: 6 n_{L},
$$

where for the last step $N_{x} \approx 3 V$ has been assumed. Thus, the Laplacetransformed implementation will be faster than the conventional implementation if $O>6 n_{L}$.

The number of grid points $n_{L}$ depends on the requested accuracy and the spread of the orbital energy denominators in Eq. 8.8). The efficiency of Laplace-transformed SOS-RI-MP2 calculations can therefore (in difference to conventional RI-MP2 calculations) be enhanced significantly by a carefull choice of the thresholds, the basis set, and the orbitals included in the correlation treatment:

- The threshold conv for the numerical integration is by default set to the value of conv specified for the ground state energy in the data group \$ricc2 (see Sec. 15.2.13), which is initialized using the threshold \$denconv, which by default is set conservatively to the tight value of $10^{-7}$.
- For single point energy calculations conv in \$laplace can savely be set to 4 , which gives SOS-MP2 energies converged within $\approx 10^{-4}$ a.u. with computational costs reduced by one third or more compared to calculations with the default settings for these thresholds.
- For geometry optimizations with SOS-MP2 we recommend to set conv in $\$$ laplace to 5 .
- The spread of the orbital energy denominators depends on the basis sets and the orbitals included in the correlation treatment. Most segmented contracted basis sets of triple- $\zeta$ or higher accuracy (as e.g. the TZVPP and QZVPP basis sets) lead to rather high lying "anti core" orbitals with orbital energies of 10 a.u. and more.
- For the calculation of SOS-MP2 valence correlation energies it is recommended to exclude such orbitals from the correlation treatment (see input for \$freeze in Sec. 15 .
- Alternatively one can use general contracted basis sets, as e.g. the correlation consistent cc-pVXZ basis sets. But note that general contracted basis sets increase the computational costs for the integral evaluation in the Hartree-Fock and, for gradient calculations, also the CPHF equations and related 4 -index integral derivatives.
- Also for the calculation of all-electron correlation energies with corevalence basis sets which include uncontracted steep functions it is recommended to check if extremely high-lying anti core orbitals can be excluded.

Note that for large molecules it is recommended to disable for geometry optimizations (or for gradient or property calculations in general) the preoptimization for the Z vector equations with the nozpreopt option in the \$response data group (see Sec. 15.2.13.

## Restrictions:

- The Laplace-transformed SOS-MP2 implementation is presently only parallelized with MPI. The OpenMP parallelization is not (yet) recognized by the LT-SOS-RI-MP2 related program parts.
- It is presently not compatible with the calculation of the $D_{1}$ and $D_{2}$ diagnostics. The respective options will be ignored by program if the Laplacetransformed implementation is used.


## Chapter 9

## Second-Order Approximate Coupled-Cluster (CC2) Calculations

ricc2 is a module for the calculation of excitation energies and response properties at a correlated $a b$ initio level, in particular the second-order approximate coupledcluster model CC2 [102]. All calculations employ the resolution-of-the-identity (RI) approximation for the electron repulsion integrals used in the correlation treatment and the description of excitation processes. At present the following functionalities are implemented:
ground state energies for MP2 and CC2 and spin-component scaled variants thereof; the MP2 results are identical with those obtained with rimp2 (but usually the calculations are somewhat faster).
excitation energies for the models CIS/CCS, $\operatorname{CIS}(\mathrm{D}), \operatorname{CIS}\left(\mathrm{D}_{\infty}\right), \operatorname{ADC}(2)$, and CC2
transition moments for ground state - excited and excited - excited state transitions for the models CCS and CC2; for $\operatorname{ADC}(2)$ only transition moments for ground state - excited state transitions are available
first-order properties for the ground state with SCF (CCS), MP2, and CC2 and for excited states with CCS, $\mathrm{CC} 2, \operatorname{ADC}(2)$ and $\operatorname{CIS}\left(\mathrm{D}_{\infty}\right)$
geometric gradients for the electronic ground state at the MP2 and the CC2 level; for electronically excited states at the $\operatorname{CIS}\left(\mathrm{D}_{\infty}\right), \operatorname{ADC}(2)$, and CC 2 level
gradients for auxiliary basis sets for RI-MP2, -CC2, etc. calculations based on the RI-MP2 error functional

F12 corrections to RI-MP2; MP2 ground-state energies can be computed (in $C_{1}$ symmetry) using explicitly-correlated two-electron basis functions in the framework of the MP2-F12 model [103, 99].

All functionalities at the MP2 and CC2 level are implemented for closed-shell RHF and open-shell UHF reference wavefunctions. Calculations with the method CIS, CIS(D), CIS $\left(\mathrm{D}_{\infty}\right)$ and $\mathrm{ADC}(2)$ are presently restricted to closed-shell RHF and open-shell UHF reference wavefunctions. Ground state energies for MP2, MP2F12 and CC2 and excited state energies for CC2 are also implemented for single determinant restricted open-shell Hartree-Fock (ROHF) reference wavefunctions. (Note, that presently no gradients are available for MP2 and CC 2 with ROHF reference wavefunctions.)

## Prerequisites

Calculations with the ricc2 module require (almost) the same prerequisites as RIMP2 calculations:

1. a converged SCF calculation with the one-electron density convergence threshold set to \$denconv 1.d-5 or less
2. an auxiliary basis defined in the data group \$cbas
3. if orbitals should be excluded from the correlation treatment (and excitation processes) the data group \$freeze has to be set
4. the maximum core memory which the program is allowed to allocate should be defined in the data group \$maxcor; the recommended value is $66-75 \%$ of the available (physical) core memory.
5. depending on the type of calculations that should be carried out, additionally the data groups \$ricc2, \$excitations, \$response, and \$rir12 have to be set (see below and Section 15.2 .13 ).

For calculations with the ricc2 program it is recommended to use the cc2 submenu of the define program to set the data groups \$denconv, \$freeze, \$cbas, \$maxcor. MP2-F12 calculations require in addition the data groups \$rir12, \$cabs, \$jkbas and $\$ 1 \mathrm{cg}$. The exponent of the Slater function in the interelectronic distance $r_{12}$, which appears in the geminals used MP2-F12 is defined in the data group $\$ 1 \mathrm{cg}$ and should be adapted to the one-electron basis set which is used.

Note, that the implementation of non-abelian point groups in ricc2 is limited to the electronic ground state (but comprises all of the RI-MP2 functionality included in ricc2). In the present version ricc2 can for excited states only deal with real abelian point groups $\left(C_{1}, C_{s}, C_{2}, C_{i}, C_{2 h}, C_{2 v}, D_{2}, D_{2 h}\right)$. The F12 correction can only be calculated in the $C_{1}$ point group.

## How To Perform a Calculation

Single point calculations:
Call the ricc2 program after a converged SCF calculation, which can be carried either with the dscf or the ridft program.

Geometry optimizations and molecular dynamics:
Invoke jobex with the -level CC2 option; see Section 5.1 for additional options and parameters of the jobex script that might be needed or useful for geometry optimizations and ab initio molecular dynamics calculations.

Force constants and vibrational frequencies:
Force constants can be calculated by numerical differentiation of the gradients. Invoke for this NumForce with the -level CC2 option; see Chapter 11 for details about Numforce. The usage of the Numforce interface for excited states is restricted to $C_{1}$ symmetry.

Note: using ricc2 in connection with jobex or Numforce requires that the method and the electronic state, for which the gradient should be calculated and written to the interface files, is specified in the option geoopt (see Section 9.3.1) in datagroup \$ricc2 (see Section 15.2.13). For calculations on excited states this state has in addition to be included in the input for excitation energies in datagroup \$excitations.

RI-SCF reference wavefunctions: The ricc2 program can be used in combination with conventional SCF or with the RI-J and RI-JK approximations for SCF, with the exception that the calculation of gradients for reference wavefunctions which employ only the RI-J approximation for the Coulomb matrix but 4-index integrals for the exchange matrix is presently not supported. The implementation of gradients in ricc2 assumes that the reference wavefunction has either been calculated with RI approximation (using dscf) or with the RI-JK approximation (using ridft).
See Chapter 6 for a discussion of the RI approximations in SCF calculations and 15.2 .5 for the required input. In geometry optimizations with jobex and for the calculation of force constants and vibrational spectra with NumForce, the ricc2 program is used in combination with the RI-JK approximation for the Hatree-Fock calculation (using ridft) if jobex and NumForce are invoked with the -rijk option.

## How to quote

If results obtained with the ricc2 program are used in publications, the following citations should be included if you have used the methods, program parts, auxiliary basis sets, or results reported in therein:

## Methods:

- for the approximate coupled-cluster singles-and-doubles model CC2:
O. Christiansen, H. Koch, P. Jørgensen, Chem. Phys. Lett., 243 (1995) 409-418.
- for CI singles with a perturb. correct. for connected double excitations, CIS(D):
M. Head-Gordon, R. J. Rico, M. Oumi and T. J. Lee, Chem. Phys. Lett., 219 (1994) 21.
and for the iterative $\operatorname{CIS}\left(\mathrm{D}_{\infty}\right)$ variant:
M. Head-Gordon, M. Oumi and D. Maurice, Mol. Phys. 96 (1999) 593.
- for the algebraic diagrammatic construction through second order $\operatorname{ADC}(2)$ :
J. Schirmer, Phys. Rev. A. 26 (1981) 2395. A. B. Trofimov and J. Schirmer, J. Phys. B. 28 (1995) 2299.
- for the RI-MP2-F12 energy:
W. Klopper and C. C. M. Samson, J. Chem. Phys. 116 (2002) 63976410.
D. P. Tew and W. Klopper, J. Chem. Phys. 123 (2005) 074101.
- for the SCS and SOS variants of CC2:
A. Hellweg, S. Grün, C. Hättig, Phys. Chem. Chem. Phys. 10 (2008) 4119-4127.


## Implementation:

- please, include always a reference to the publication reporting the implementation of the core part of the ricc2 program:
C. Hättig and F. Weigend, J. Chem. Phys. 113 (2000) 5154.
- for transition moments and excited state first order properties: C. Hättig and A. Köhn, J. Chem. Phys. 117 (2002) 6939.
- for triplet excited states include:
C. Hättig and K. Hald, Phys. Chem. Chem. Phys. 4 (2002) 2111.
C. Hättig, A. Köhn and K. Hald, J. Chem. Phys. 116 (2002) 5401.
- for ground state geometry optimizations include: C. Hättig, J. Chem. Phys. 118 (2003) 7751.
- for geometry optimizations for excited states include: A. Köhn and C. Hättig, J. Chem. Phys. 119 (2003) 5021.
- for calculations with RI-ADC(2), RI-CIS(D), RI-CIS(D ${ }_{\infty}$ ) include: C. Hättig, Adv. Quant. Chem. 50 (2005) 37.
- if the parallel version of ricc2 is used include a reference to:
C. Hättig, A. Hellweg, A. Köhn, Phys. Chem. Chem. Phys. 8 (2006) 1159.
- for transition moments between excited states:
M. Pabst and A. Köhn, J. Chem. Phys. 129 (2008) 214101.


## Auxiliary basis sets:

- the appropriate reference for the auxiliary SVP, TZVP and TZVPP basis sets (for calculations with RI-MP2, RI-CC2 and related methods) is:
F. Weigend, M. Häser, H. Patzelt, R. Ahlrichs, Chem. Phys. Lett. 294 (1998) 143.
- for the auxiliary cc-pVXZ (cc-pV(X+d)Z), aug-cc-pVXZ (aug-cc-pV(X+d)Z) basis sets with $\mathrm{X}=\mathrm{D}, \mathrm{T}$, or Q cite:
F. Weigend, A. Köhn, C. Hättig, J. Chem. Phys. 116 (2001) 3175.
- for the auxiliary cc-pV5Z (cc-pV(5+d)Z), aug-cc-pV5Z (aug-cc-pV(5+d)Z), cc-pwCVXZ with $\mathrm{X}=\mathrm{D}, \mathrm{T}, \mathrm{Q}, 5$ and QZVPP basis sets the reference is: C. Hättig, Phys. Chem. Chem. Phys. 7 (2005) 59-66.

This reference should also be included if you employ the analytic basis set gradients implemented in the ricc2 program for the optimization of your own auxiliary basis set(s).

- for the auxiliary def2-basis sets from Rb to Rn the reference is:
A. Hellweg, C. Hättig, S. Höfener, and W. Klopper, Theor. Chem. Acc. 117 (2007) 587-597.
(For more details on the references for the basis sets included in the basis set libraries of the TURBOMOLE distribution see Sec. 1.3 and the library files.)


### 9.1 CC2 Ground-State Energy Calculations

The CC2 ground-state energy is - similarly to other coupled-cluster energies - obtained from the expression

$$
\begin{align*}
E_{\mathrm{CC}} & =\langle\mathrm{HF}| H|\mathrm{CC}\rangle=\langle\mathrm{HF}| H \exp (T)|\mathrm{HF}\rangle  \tag{9.1}\\
& =E_{\mathrm{SCF}}+\sum_{i a j b}\left[t_{i j}^{a b}+t_{i}^{a} t_{j}^{b}\right][2(i a \mid j b)-(j a \mid i b)], \tag{9.2}
\end{align*}
$$

where the cluster operator $T$ is expanded as $T=T_{1}+T_{2}$ with

$$
\begin{align*}
& T_{1}=\sum_{a i} t_{a i} \tau_{a i}  \tag{9.3}\\
& T_{2}=\frac{1}{2} \sum_{a i b j} t_{a i b j} \tau_{a i b j} \tag{9.4}
\end{align*}
$$

(for a closed-shell case; in an open-shell case an additional spin summation has to be included). The cluster amplitudes $t_{a i}$ and $t_{a i b j}$ are obtained as solution of the CC2 cluster equations 102):

$$
\begin{align*}
& \Omega_{\mu_{1}}=\left\langle\mu_{1}\right| \hat{H}+\left[\hat{H}, T_{2}\right]|\mathrm{HF}\rangle=0,  \tag{9.5}\\
& \Omega_{\mu_{2}}=\left\langle\mu_{2}\right| \hat{H}+\left[F, T_{2}\right]|\mathrm{HF}\rangle=0, \tag{9.6}
\end{align*}
$$

with

$$
\hat{H}=\exp \left(-T_{1}\right) H \exp \left(T_{1}\right),
$$

where $\mu_{1}$ and $\mu_{2}$ denote, respectively, the sets of all singly and doubly excited determinants.
The residual of the cluster equations $\Omega\left(t_{a i}, t_{a i b j}\right)$ is the so-called vector function. The recommended reference for the CC2 model is ref. [102], the implementation with the resolution-of-the-identity approximation, RI-CC2, was first described in ref. [10].

Advantages of the RI approximation: For RI-CC2 calculations, the operation count and thereby the CPU and the wall time increases-as for RI-MP2 calculations-approximately with $\mathcal{O}\left(O^{2} V^{2} N_{x}\right)$, where $O$ is the number of occupied and $V$ the number of virtual orbitals and $N_{x}$ the dimension of the auxiliary basis set for the resolution of the identity. Since RI-CC2 calculations require the (iterative) solution of the cluster equations (9.5) and (9.6), they are about $10-20$ times more expensive than MP2 calculations. The disk space requirements are approximately $O(2 V+N) N_{x}+N_{x}^{2}$ double precision words. The details of the algorithms are described in ref. [10], for the error introduced by the RI approximation see refs. [86, 104].

Required input data: In addition to the above mentioned prerequisites groundstate energy calculations with the ricc2 module require only the data group \$ricc2 (see Section 15.2.13), which defines the methods, convergence thresholds and limits for the number of iterations etc. If this data group is not set, the program will carry out a CC2 calculation. With the input

```
$ricc2
 mp2
 cc2
 conv=6
```

the ricc2 program will calculate the MP2 and CC2 ground-state energies, the latter converged to approximately $10^{-6}$ a.u. The solution for the single-substitution cluster amplitudes is saved in the file CCRO--1--1---0, which can be kept for a later restart.

Ground-State calculations for other methods than CC2: The MP2 equations and the energy are obtained by restricting in the CC2 equations the singlesubstitution amplitudes $t_{a i}$ to zero. In this sense MP2 can be derived as a simplification of CC 2 . But it should be noted that CC 2 energies and geometries are usually not more accurate than MP2.

For CCS and CIS the double-substitution amplitudes are excluded from the cluster expansion and the single-substitution amplitudes for the ground state wavefunction are zero for closed-shell RHF and open-shell UHF reference wavefunctions and thus energy is identical to the SCF energy.
For the Methods $\operatorname{CIS}(\mathrm{D}), \operatorname{CIS}\left(\mathrm{D}_{\infty}\right)$ and $\operatorname{ADC}(2)$ the ground state is identified with the MP2 ground state to define is total energy of the excited state, which is needed
for the definition of gradients and (relaxed) first-order properties which are obtained as (analytic) derivatives the total energy.

Diagnostics: Together with the MP2 and/or CC2 ground state energy the program evaluates the $D_{1}$ diagnostic proposed by Janssen and Nielsen 87], which is defined as:

$$
\begin{equation*}
D_{1}=\sqrt{\max \left(\lambda_{\max }\left[\sum_{i} t_{a i} t_{b i}\right], \lambda_{\max }\left[\sum_{a} t_{a i} t_{a j}\right]\right)} \tag{9.7}
\end{equation*}
$$

where $\lambda_{\max }[\mathbf{M}]$ is the largest eigenvalue of a positive definite matrix $\mathbf{M}$. (For CC2 the $D_{1}$ diagnostic will be computed automatically. For MP2 is must explictly be requested with the d1diag option in the $\$$ ricc2 data group, since for RI-MP2 the calculation of $D_{1}$ will contribute significantly to the computational costs.) Large values of $D_{1}$ indicate a multireference character of the ground-state introduced by strong orbital relaxation effects. In difference to the $T_{1}$ and $S_{2}$ diagnostics proposed earlier by Lee and coworkers, the $D_{1}$ diagnostic is strictly size-intensive and can thus be used also for large systems and to compare results for molecules of different size. MP2 and CC2 results for geometries and vibrational frequencies are, in general, in excellent agreement with those of higher-order correlation methods if, respectively, $D_{1}(\mathrm{MP} 2) \leq 0.015$ and $D_{1}(\mathrm{CC} 2) \leq 0.03087,13$. For $D_{1}(\mathrm{MP} 2) \leq 0.040$ and $D_{1}(\mathrm{CC} 2) \leq 0.050 \mathrm{MP} 2$ and/or CC2 usually still perform well, but results should be carefully checked. Larger values of $D_{1}$ indicate that MP2 and CC2 are inadequate to describe the ground state of the system correctly!
The $D_{2}$ diagnostic proposed by Nielsen and Janssen [88] can also be evaluated. This analysis can be triggered, whenever a response property is calculated, e.g. dipole moment, with the keyword \$D2-diagnostic. Note that the calculation of $D_{2}$ requires an additional $O\left(N^{5}\right)$ step! $D_{2}(\mathrm{MP} 2 / \mathrm{CC} 2) \leq 0.15$ are in excellent agreement with those of higher-order correlation methods, for $D_{2}(\mathrm{MP} 2 / \mathrm{CC} 2) \geq 0.18$ the results should be carefully checked.

### 9.2 Calculation of Excitation Energies

With the ricc2 program excitation energies can presently be calculated with the RI variants of the methods CCS/CIS, $\operatorname{CIS}(D), \operatorname{CIS}\left(D_{\infty}\right), \operatorname{ADC}(2)$ and $\operatorname{CC} 2$. The CC 2 excitation energies are obtained by standard coupled-cluster linear response theory as eigenvalues of the Jacobian, defined as derivative of the vector function with respect to the cluster amplitudes.

$$
\mathbf{A}_{\mu \nu}^{\mathrm{CC} 2}=\frac{d \Omega_{\mu}}{d t_{\nu}}=\left(\begin{array}{cc}
\left\langle\mu_{1}\right|\left[\left[\hat{H}+\left[\hat{H}, T_{2}\right], \tau_{\nu_{1}}\right]|\mathrm{HF}\rangle\right. & \left\langle\mu_{1}\right|\left[\hat{H}, \tau_{\nu_{2}}\right]|\mathrm{HF}\rangle  \tag{9.8}\\
\left\langle\mu_{2}\right|\left[\hat{H}, \tau_{\nu_{1}}\right]|\mathrm{HF}\rangle & \left\langle\mu_{2}\right|\left[F, \tau_{\nu_{2}}\right]|\mathrm{HF}\rangle
\end{array}\right)
$$

Since the CC2 Jacobian is a non-symmetric matrix, left and right eigenvectors are different and the right (left) eigenvectors $E_{\nu}^{i}\left(\bar{E}_{\mu}^{i}\right)$ are not orthogonal among them-
selves, but form a biorthonormal basis (if properly normalized):

$$
\begin{equation*}
\bar{E}^{i} E^{j}=\bar{E}_{\mu_{1}}^{i} E_{\nu_{1}}^{j}+\bar{E}_{\mu_{2}}^{i} E_{\nu_{2}}^{j}=\delta_{i j} . \tag{9.9}
\end{equation*}
$$

To obtain excitation energies only the right or the left eigenvalue problem needs to be solved, but for the calculation of transition strengths and first-order properties both, left and right, eigenvectors are needed (see below). A second complication that arises from the non-symmetric eigenvalue problem is that in the case of close degeneracies within the same irreducible representation (symmetry) it can happen that instead of two close lying real roots a degenerate complex conjugated pair of excitation energies and eigenvectors is obtained. CC2 (and also other standard coupled-cluster response methods) are thus not suited for the description of conical intersections etc. For the general theory behind coupled cluster response calculations see e.g. ref. 105,106 or other reviews.
The ricc2 program exploits that the doubles/doubles block of the CC2 Jacobian is diagonal and the (linear) eigenvalue problem in the singles and doubles space can be reformulated as a (non-linear) eigenvalue problem in single-substitution space only:

$$
\begin{gathered}
\mathbf{A}_{\mu_{1} \nu_{1}}^{e f f}(t, \omega)=\mathbf{A}_{\mu_{1} \nu_{1}}^{\mathrm{CC} 2}(t)-\mathbf{A}_{\mu_{1} \gamma_{2}}^{\mathrm{CC} 2}(t)\left(\mathbf{A}_{\gamma_{2} \gamma_{2}}-\omega\right) \mathbf{A}_{\gamma_{2} \nu_{1}}^{\mathrm{CC} 2}(t) \\
\mathbf{A}_{\mu_{1} \nu_{1}}^{e f f}\left(t^{\mathrm{CC} 2}, \omega^{\mathrm{CC} 2}\right) E_{\nu_{1}}=\omega^{\mathrm{CC} 2} E_{\nu_{1}}
\end{gathered}
$$

This allows to avoid the storage of the double-substitution part of the eigen- or excitation vectors $E_{\nu_{2}}, \bar{E}_{\nu_{2}}$. The algorithms are described in refs. 10, 11, about the RI error see ref. 104.
The solution of the CC2 eigenvalue problem can be started from the solutions of the CCS eigenvalue problem (see below) or the trial vectors or solutions of a previous CC2 excitation energy calculation. The operation count per transformed trial vector for one iteration for the CC 2 eigenvalue problem is about 1.3-1.7 times the operation count for one iteration for the cluster equations in the ground-state calculationdepending on the number of vectors transformed simultaneously. The disk space requirements are about $O(V+N) N_{x}$ double precision words per vector in addition to the disk space required for the ground state calculation.
CCS excitation energies are obtained by the same approach, but here double-substitutions are excluded from the expansion of the excitation or eigenvectors and the ground-state amplitudes are zero. Therefore the CCS Jacobian,

$$
\begin{equation*}
\mathbf{A}_{\mu \nu}^{\mathrm{CCS}}=\frac{d \Omega_{\mu}}{d t_{\nu}}=\left\langle\mu_{1}\right|\left[H, \tau_{\nu_{1}}\right]|\mathrm{HF}\rangle \tag{9.10}
\end{equation*}
$$

is a symmetric matrix and left and right eigenvectors are identical and form an orthonormal basis. The configuration interaction singles (CIS) excitation energies are identical to the CCS excitation energies. The operation count for a RI-CIS calculation is $\mathcal{O}\left(O N^{2} N_{x}\right)$ per iteration and transformed trial vector.

The second-order perturbative correction CIS(D) to the CIS excitation energies is calculated from the expression

$$
\begin{equation*}
\omega^{\mathrm{CIS}(\mathrm{D})}=\omega^{\mathrm{CIS}}+\omega^{(D)}=\mathbf{E}^{\mathrm{CIS}} \mathbf{A}^{e f f}\left(t^{\mathrm{MP} 1}, \omega^{C I S}\right) \mathbf{E}^{\mathrm{CIS}} \tag{9.11}
\end{equation*}
$$

(Note that $t^{\mathrm{MP} 1}$ are the first-order double-substitution amplitudes from which also the MP2 ground-state energy is calculated; the first-order single-substitution amplitudes vanish for a Hartree-Fock reference due to the Brillouin theorem.) The operation count for a RI-CIS(D) calculation is similar to that of a single iteration for the CC 2 eigenvalue problem. Also disk space requirements are similar.

Running excitation energy calculations: The calculation of excitation energies is initiated by the data group \$excitations in which at least the symmetries (irreducible representations) and the number of the excited states must be given (for other options see Section 15.2.13). With the following input the ricc2 program will calculate the lowest two roots (states) for the symmetries $A_{1}$ and $B_{1}$ of singlet multiplicity ${ }^{\text {f }}$ at the CIS, CIS(D) and CC2 level with default convergence thresholds. Ground-state calculations will be carried out for MP2 (needed for the CIS(D) model and used as start guess for CC2) and CC2.

```
$ricc2
 cis
 cis(d)
 cc2
$excitations
 irrep=a1 nexc=2
 irrep=b1 nexc=2
```

The single-substitution parts of the right eigenvectors are stored in files named CCREO- $s--m-x x x$, where $s$ is the number of the symmetry class (irreducible representation), $m$ is the multiplicity, and $x x x$ the number of the excitation within the symmetry class. For the left eigenvectors the single-substitution parts are stored in files named CCLEO $-s^{-}-m-x x x$. These files can be kept for later restarts.

Trouble shooting: For the iterative second-order methods $\operatorname{CIS}\left(\mathrm{D}_{\infty}\right), \operatorname{ADC}(2)$, and CC2 the solution of the nonlinear partitioned eigenvalue problem proceeds usually in three steps:

1. solution of the CCS/CIS eigenvalue problem to generate reasonable start vectors; the eigenvectors are converged in this step only to a remaining residual norm < preopt
2. pre-optimization of the eigenvectors by a robust modified Davidson algorithm (see ref. [10]) using the LINEAR CC RESPONSE SOLVER until the norm of all residuals are below preopt, combined with a DIIS extrapolation for roots assumed to be converged below the threshold thrdiis.

[^0]3. solution of the nonlinear eigenvalue problem with a DIIS algorithm using the DIIS CC RESPONSE SOLVER until the norm of the residuals are below the required threshold conv

This procedure is usually fairly stable and efficient with the default values for the thresholds. But for difficult cases it can be necessary to select tighter thresholds. In case of convergence problems the first thing do is to verify that the ground state is not a multireference case by checking the D 1 diagnostic. If this is not the case the following situations can cause problems in the calculation of excitation energies:

- almost degenerate roots in the same symmetry class
- complex roots (break down of the CC approximation close to conical intersections)
- large contributions from double excitations

The first two reasons can be identified by running the program with a print level $\leq 3$. It will then print in each iteration the actual estimates for the eigenvalues. If some of these are very close or if complex roots appear, you should make sure that the DIIS procedure is not switched on before the residuals of the eigenvectors are small compared to the differences in the eigenvalues. For this, thrdiis (controlling the DIIS extrapolation in the linear solver) should be set about one order of magnitude smaller than the smallest difference between two eigenvalues and preopt (controlling the switch to the DIIS solver) again about one order of magnitude smaller then thrdiis.
Tighter thresholds or difficult situations can make it necessary to increase the limit for the number of iterations maxiter.
In rare cases complex roots might persist even with tight convergence thresholds. This can happen for CC 2 and $\operatorname{CIS}\left(\mathrm{D}_{\infty}\right)$ close to conical intersections between two states of the same symmetry, where CC response can fail due to its non-symmetric Jacobian. In this case one can try to use instead the $\operatorname{ADC}(2)$ model. But the nonlinear partitioned form of the eigenvalue problem used in the ricc2 program is not well suited to deal with such situations.
Large contributions from double excitations can not be monitored in the output of the (quasi-) linear solver. But it is possible to do in advance a CIS(D) calculation. The CIS(D) results for the ||T2|| diagnostic correlate usually well with the CC2 results for this diagnostic. Else the DIIS solver will print the ||T2|| diagnostics in each iteration if the print level is set $>3$. States with large double excitation contributions converge notoriously slow (a consequence of the partitioned formulation used in the ricc2 program). However, the results obtained with second-order methods for double excited states will anyway be poor. It is strongly recommended to use in such situations a higher-level method.

### 9.3 First-Order Properties and Gradients

For the ground state first-order properties (expectation values) are implemented at the SCF, MP2 and CC2 level. Note that for the ground state CCS and CIS are equivalent to SCF. For excited states first-order properties are implemented only at the CCS and CC2 level. Gradients are presently only available for the ground state at the MP2 and the CC2 and for excited states only at the CC2 level.

### 9.3.1 Ground State Properties, Gradients and Geometries

For CC2, one distinguishes between orbital-relaxed and unrelaxed properties. Both are calculated as first derivatives of the respective energy with respect to an external field corresponding to the calculated property. They differ in the treatment of the SCF orbitals. In the orbital-relaxed case the external field is (formally) already included at the SCF stage and the orbitals are allowed to relax in the external field; in the orbital-unrelaxed case the external field is first applied after the SCF calculation and the orbitals do not respond to the external field. Orbital-unrelaxed CC 2 properties are calculated as first derivatives of the real part of the unrelaxed Lagrangian 102

$$
\begin{align*}
L^{\mathrm{ur} \mathrm{CC} 2}(t, \bar{t}, \beta)= & \langle\mathrm{HF}| H|\mathrm{CC}\rangle+\sum_{\mu_{1}} \bar{t}_{\mu_{1}}\left\langle\mu_{1}\right| \hat{H}+\left[\hat{H}, T_{2}\right]|\mathrm{HF}\rangle  \tag{9.12}\\
& +\sum_{\mu_{2}} \bar{t}_{\mu_{2}}\left\langle\mu_{2}\right| \hat{H}+\left[F_{0}+\beta \hat{V}, T_{2}\right]|\mathrm{HF}\rangle
\end{align*}
$$

with $H=H_{0}+\beta V$-where $V$ is the (one-electron) operator describing the external field, $\beta$ the field strength, and $H_{0}$ and $F_{0}$ are the Hamiltonian and Fock operators of the unperturbed system - by the expression:

$$
\begin{align*}
\langle V\rangle^{\mathrm{ur} \mathrm{CC} 2}= & \Re\left(\frac{\partial L^{\mathrm{ur} \mathrm{CC} 2}(t, \bar{t}, \beta)}{\partial \beta}\right)_{0}=\sum_{p q} D_{p q}^{\mathrm{ur}} V_{p q}  \tag{9.13}\\
= & \Re\left(\langle\mathrm{HF}| \hat{V}|\mathrm{HF}\rangle+\sum_{\mu_{1}} \bar{t}_{\mu_{1}}\left\langle\mu_{1}\right| \hat{V}+\left[V, T_{2}\right]|\mathrm{HF}\rangle\right.  \tag{9.14}\\
& \left.+\sum_{\mu_{2}} \bar{t}_{\mu_{2}}\left\langle\mu_{2}\right|\left[\hat{V}, T_{2}\right]|\mathrm{HF}\rangle\right),
\end{align*}
$$

where $\Re$ indicates that the real part is taken. Relaxed CC2 properties (and gradients) are calculated from the the full variational density including the contributions from the orbital response to the external perturbation, which are derived from the Lagrangian 106, 13

$$
\begin{align*}
L^{\mathrm{rel} \mathrm{CC} 2}(t, \bar{t})= & \langle\mathrm{HF}| H|\mathrm{CC}\rangle+\sum_{\mu_{1}} \bar{t}_{\mu_{1}}\left\langle\mu_{1}\right| \hat{H}+\left[\hat{H}, T_{2}\right]|\mathrm{HF}\rangle  \tag{9.15}\\
& +\sum_{\mu_{2}} \bar{t}_{\mu_{2}}\left\langle\mu_{2}\right| \hat{H}+\left[F, T_{2}\right]|\mathrm{HF}\rangle+\sum_{\mu_{0}} \bar{\kappa}_{\mu_{0}} F_{\mu_{0}},
\end{align*}
$$

where $F$ is the Fock operator corresponding to the Hamiltonian of the perturbed system $H=H_{0}+\beta V$. One-electron properties are then obtained as:

$$
\begin{align*}
\langle V\rangle^{\mathrm{rel} \mathrm{CC} 2}= & \Re\left(\langle\mathrm{HF}| \hat{V}|\mathrm{HF}\rangle+\sum_{\mu_{1}} \bar{t}_{\mu_{1}}\left\langle\mu_{1}\right| \hat{V}+\left[V, T_{2}\right]|\mathrm{HF}\rangle\right.  \tag{9.16}\\
& \left.+\sum_{\mu_{2}} \bar{\mu}_{\mu_{2}}\left\langle\mu_{2}\right|\left[V, T_{2}\right]|\mathrm{HF}\rangle+\sum_{\mu_{0}} \bar{\kappa}_{\mu_{0}} V_{\mu_{0}}\right), \\
= & \sum_{p q} D_{p q}^{\mathrm{rel}} V_{p q} . \tag{9.17}
\end{align*}
$$

The calculation of one-electron first-order properties requires that in addition to the cluster equations also the linear equations for the Lagrangian multipliers $\bar{t}_{\mu}$ are solved, which requires similar resources (CPU, disk space, and memory) as the calculation of a single excitation energy. For orbital-relaxed properties also a CPHFlike linear equation for the Lagrangian multipliers $\bar{\kappa}_{\mu_{0}}$ needs to be solved and the two-electron density has to be build, since it is needed to set up the inhomogeneity (right-hand side). The calculation of relaxed properties is therefore somewhat more expensive - the operation count for solving the so-called Z-vector equations is similar to what is needed for an SCF calculation - and requires also more disk space to keep intermediates for the two-electron density - about $O(2 V+2 N) N_{x}+N_{x}^{2}$ in addition to what is needed for the solution of the cluster equations. For ground states, orbital-relaxed first-order properties are standard in the literature.
The calculation of the gradient implies the calculation of the same variational densities as needed for relaxed one-electron properties and the solution of the same equations. The construction of the gradient contributions from the densities and derivative integrals takes about the same CPU time as 3-4 SCF iterations and only minor extra disk space. For details of the implementation of CC 2 relaxed first-order properties and gradients and a discussion of applicability and trends of CC 2 groundstate equilibrium geometries see ref. [13]. The following is in example input for a MP2 and CC2 single point calculation of first-order properties and gradients:

```
$ricc2
 mp2
 cc2
$response
 static relaxed operators=diplen,qudlen
 gradient
```

A different input is required for geometry optimizations: in this case the model for which the geometry should be optimized must be specified in the data group \$ricc2 by the keyword geoopt:
\$ricc2
mp2

```
cc2
geoopt model=cc2
```

For CC 2 calculations, the single-substitution part of the Lagrangian multipliers $\bar{t}_{\mu}$ are saved in the file CCLO--1--1---0 and can be kept for a restart (for MP2 and CCS, the single-substitution part $\bar{t}_{\mu}$ vanishes).

For MP2 only relaxed first-order properties and gradients are implemented (unrelaxed MP2 properties are defined differently than in CC response theory and are not implemented). For MP2, only the CPHF-like Z-vector equations for $\bar{\kappa}_{\mu_{0}}$ need to be solved, no equations have to be solved for the Lagrangian multipliers $\bar{t}_{\mu}$. CPU time and disk space requirements are thus somewhat smaller than for CC 2 properties or gradients.
For SCF/CIS/CCS it is recommended to use the modules grad and rdgrad for the calculation of, ground state gradients and first-order properties.

### 9.3.2 Excited State Properties, Gradients and Geometries

Also for excited states presently unrelaxed and relaxed first-order properties are available in the ricc2 program. These are implemented for CCS and CC2. Note, that in the unrelaxed case CIS and CCS are not equivalent for excited-states firstorder properties and no first-order properties are implemented for CIS in the ricc2 program.

## Orbital-unrelaxed first-order properties

The unrelaxed first-order properties are calculated from the variational excited states Lagrangian 107, which for the calculation of unrelaxed properties is composed of the unrelaxed ground state Lagrangian, Eq. (9.12), and the expression for the excitation energy:

$$
\begin{align*}
L^{\mathrm{ur} \mathrm{CC} 2, \mathrm{ex}}\left(E, \bar{E}, t, \bar{t}^{(e x)}, \beta\right)= & \langle\mathrm{HF}| H|\mathrm{CC}\rangle+\sum_{\mu \nu} \bar{E}_{\mu} \mathbf{A}_{\mu \nu}(t, \beta) E_{\nu}  \tag{9.18}\\
& +\sum_{\mu_{1}} \bar{t}_{\mu_{1}}^{(\text {(ex) }}\left\langle\mu_{1}\right| \hat{H}+\left[\hat{H}, T_{2}\right]|\mathrm{HF}\rangle \\
& +\sum_{\mu_{2}} \bar{t}_{\mu_{2}}^{(e x)}\left\langle\mu_{2}\right| \hat{H}+\left[F_{0}+\beta \hat{V}, T_{2}\right]|\mathrm{HF}\rangle
\end{align*}
$$

where it is assumed that the left and right eigenvectors are normalized such that $\sum_{\mu \nu} \bar{E}_{\mu}\left\langle\mu \mid \tau_{\nu}\right\rangle E_{\nu}=1$ and $H=H_{0}+\beta V$. The first-order properties are calculated as first derivatives of $L^{\text {ur } C C 2, e x}\left(E, \bar{E}, t, \bar{t}^{(e x)}, \beta\right)$ with respect to the field strength $\beta$ and are evaluated via a density formalism:

$$
\begin{equation*}
\langle V\rangle^{\mathrm{ur}, \mathrm{ex}}=\mathcal{R}\left(\frac{\partial L^{u r, e x}\left(E, \bar{E}, t, \bar{t}^{(e x)}, \beta\right)}{\partial \beta}\right)_{0}=\sum_{p q} D_{p q}^{\mathrm{ur}, \mathrm{ex}} V_{p q} \tag{9.19}
\end{equation*}
$$

(Again $\Re$ indicates that the real part is taken.) The unrelaxed excited-state properties obtained thereby are related in the same way to the total energy of the excited states as the unrelaxed ground-state properties to the energy of the ground state and the differences between excited- and ground-state unrelaxed properties are identical to those identified from the second residues of the quadratic response function. For a detailed description of the theory see refs. [107, 106; the algorithms for the RI-CC2 implementation are described in refs. [104, 12]. ref. [104] also contains a discussion of the basis set effects and the errors introduced by the RI approximation.

The calculation of excited-state first-order properties thus requires the calculation of both the right $\left(E_{\mu}\right)$ and left $\left(\bar{E}_{\mu}\right)$ eigenvectors and of the excited state Lagrangian multipliers $\bar{t}_{\mu}^{(e x)}$. The disk space and CPU requirements for solving the equations for $\bar{E}_{\mu}$ and $\bar{t}_{\mu}^{(e x)}$ are about the same as those for the calculation of the excitation energies. For the construction of the density matrices in addition some files with $\mathcal{O}\left(n_{\text {root }} N^{2}\right)$ size are written, where $n_{\text {root }}$ is the number of excited states.
The single-substitution parts of the excited-states Lagrangian multipliers $\bar{t}_{\mu}^{(e x)}$ are saved in files named CCNLO- $s--m-x x x$.

For the calculation of first-order properties for excited states, the keyword exprop must be added with appropriate options to the data group \$excitations; else the input is same as for the calculation of excitation energies:

```
$ricc2
 cc2
$response
 fop unrelaxed_only operators=diplen,qudlen
$excitations
 irrep=a1 nexc=2
 exprop states=all operators=diplen,qudlen
```


## Orbital-relaxed first-order properties and gradients

To obtain orbital-relaxed first-order properties or analytic derivatives (gradients) the Lagrange functional for the excited state in Eq. (9.18) is - analogously to the treatment of ground states - augmented by the equations for the SCF orbitals and the perturbations is also included in the Fock operator:

$$
\begin{align*}
L^{\mathrm{rel} \mathrm{CC} 2, \mathrm{ex}}\left(E, \bar{E}, t, \bar{t}^{(e x)}, \beta\right)= & \langle\mathrm{HF}| H|\mathrm{CC}\rangle+\sum_{\mu \nu} \bar{E}_{\mu} \mathbf{A}_{\mu \nu}(t, \beta) E_{\nu}  \tag{9.20}\\
& +\sum_{\mu_{1}} \bar{t}_{\mu_{1}}^{(e x)}\left\langle\mu_{1}\right| \hat{H}+\left[\hat{H}, T_{2}\right]|\mathrm{HF}\rangle \\
& +\sum_{\mu_{2}} \bar{t}_{\mu_{2}}^{(e x)}\left\langle\mu_{2}\right| \hat{H}+\left[F, T_{2}\right]|\mathrm{HF}\rangle+\sum_{\mu_{0}} \bar{\kappa}_{\mu_{0}}^{(e x)} F_{\mu_{0}} .
\end{align*}
$$

Compared to unrelaxed properties, the calculation of relaxed properties needs in addition for each excited state the solution of a CPHF equations for the Lagrangian
multipliers $\bar{\kappa}_{\mu_{0}}^{(e x)}$, for which the computational costs are similar to those of a HartreeFock calculation.

Orbital-relaxed properties are requested by adding the flag relaxed to the input line for the exprop option. The following is an example for a CC2 single point calculation for orbital-relaxed excited state properties:

```
$ricc2
 cc2
$excitations
 irrep=a1 nexc=2
 exprop states=all relaxed operators=diplen,qudlen
```

Note that during the calculation of orbital-relaxed excited-state properties the corresponding unrelaxed properties are also automatically evaluated at essentially no additional costs. Therefore, the calculation of unrelaxed properties can not be switched off when relaxed properties have been requested.
Again the construction of gradients requires the same variational densities as needed for relaxed one-electron properties and the solution of the same equations. The construction of the gradient contributions from one- and two-electron densities and derivative integrals takes approximately the same time as for ground states gradients (approx. 3-4 SCF iterations) and only minor extra disk space. The implementation of the excited state gradients for the RI-CC2 approach is described in detail in Ref. [108]. There one can also find some information about the performance of CC2 for structures and vibrational frequencies of excited states.
For the calculation of an excited state gradient with CC 2 at a single point (without geometry optimization and if it is not a calculation with NumForce) one can use the input:

```
$ricc2
 cc2
$excitations
 irrep=a1 nexc=2
 xgrad states=(a1 2)
```

Note, that presently it is not possible to compute gradients for more than one excited state in one ricc2 calculation.
For geometry optimizations or a numerical calculation of the Hessian with NumForce the wavefunction model and the excited state for which the geometry should be optimized have to be specified in the data group $\$$ ricc2 with the keyword geoopt:

```
$ricc2
 geoopt model=cc2 state=(a1 2)
```


## \$excitations

irrep=a1 nexc=2
If the geometry optimization should carried out for the lowest excited state (of those for which an excitation energy is requested in \$excitation), one can use alternatively state=(s1).

Since the calculation of unrelaxed and relaxed first-order properties can be combined gradient calculations without significant extra costs, a request for excited state gradients will automatically enforce the calculation of the relaxed and unrelaxed dipole moments. If the keyword geoopt is used, the relaxed dipole moment for the specified excited state and wavefunction model will be written to the control file and used in calculations with NumForce for the evaluation of the IR intensities.

### 9.3.3 Visualization of densities and Density analysis

As most other programs which allow for the calculation of wavefunctions and densities also the ricc2 module is interfaced to wavefunction analysis and visualization toolbox described in chapter 13 . From ricc2 module this interface can used in two different ways

1. If through the geoopt keyword in \$ricc2 a unique method and state has been specified for which the density, gradient and properties are evaluated, the density analysis and visualization routines will called by default with the (orbital-relaxed) density for this state and method similar as in dscf, ridft, mpgrad, etc.
2. The ricc2 program can be called in a special analysis mode which allows to analyse densities and combination (e.g. differences) of densities evaluated in preceeding ricc2 calculations.

## Default density analysis and visualization:

As in a single calculations with the ricc2 program one-electron densities can be calculated for more than one method and/or electronic state, the interface to the analysis and visualization routines require the specification of a unique level of calculation and a unique state. This is presently done through the geoopt flag which determines the method/state for which results are written to interface files (e.g. control, gradient, or xxx.map).

In ground state calculations ricc2 will pass to the density analysis routines the correlated total (and for UHF based calculations also the spin) density and the canonical SCF orbitals from which the SCF (spin) density is constructed. All options described in chapter 13 are available from within the ricc2 program apart from the evaluation of electrostatic moments, which would interfere with the calculation of expectation values requested through the fop option in \$response.

In excited state calculation ricc2 will pass the excited state total (and for UHF based calculation in addition the spin) density. But no ground state densities and/or
uncorrelated densities or orbitals. Thus, for excited states the ricc2 program does, in difference to egrad not print out a comparison with the ground state SCF density. Also, all some options which require orbitals (as e.g. the generation and visualization of localized orbitals or some population analysis options) and not available for excited states in ricc2.

As other modules, also ricc2 provides the -proper flag to bypass a re-calculation of the density and gradient to enter immediately the density analysis routines with a previously calculated density. The ricc2 program will then pass the densities found on the interface file for the density analysis routines without further check on the method and state for which they have been evaluated. If both, ground and excited state densities are found on file, both will be passed to the density analysis, thereby providing a shortcut to the -fanal and the \$anadens keyword for the analysis of differences between ground and excited state densities.

## The general density analysis option:

In general ricc2 saves by default all relaxed densities generated during a calculation in files named cc1td-<type>-<mult><irrep>-<number>, where cc1td stands for "coupled-cluster one-electron total density". <type> is one of mp2-gs (MP2 ground state), cc2-gs (CC2 ground state), ccs-xs (CCS excited state), cc2-xs (CC2 excited state), or adc2-xs ( $\operatorname{ADC}(2)$ excited state) and the other entries specify multiplicity, irreducible representation and the number of the state. Having specified the calculation of relaxed densities - e.g. by requesting relaxed one-electron properties or as a by-product of a gradient calculation-you will end up with two files named like

```
cc1td-cc2-gs-1a1-001
cc1td-cc2-xs-3a2-001
```

In case of open shell molecules, additional files with names cc1sd... (for oneelectron spin-densities) will be generated.
These files are (currently) in a binary format, similar as the files dens, mdens and edens. Therefore be aware that a transfer between different computer architectures may result in trouble.
The densities on these files can be analysed with the tools and interfaces provided by Moloch (see Section 13.2). This can be done by calling ricc2 with the option -fanal which bypasses the usual wavefunction calculation and triggers the program into an analysis mode for densities. In this mode the program interpretes \$anadens and the keywords described in Section 13.2. To plot, for example, the difference density of the two above mentioned total densities you have to add the following lines in your control file

```
$anadens
 calc my_favourite_diffden from
 1d0 cc1td-cc2-xs-3a2-001
```

```
-1d0 cc1td-cc2-gs-1a1-001
$pointval
```

and invoke

```
ricc2 -fanal
```

This will generate the files my_favourite_diffden and my_favourite_diffden.map. The latter can be converted into gOpenMol format as described in Section 13.2 .

### 9.3.4 Fast geometry optimizations with RI-SCF based gradients

If geometry optimizations on MP2 or CC2 level are performed with large basis set, especially with diffuse basis functions, the $N^{4}$-steps might become the dominant part of the overall timings. In these cases, the integral screening in the HartreeFock part often becomes inefficient. The resolution-of-the-identity can be applied here to speed up the calculation of the HF reference wavefunction, as well as the solution of the coupled-perturbed Hartree-Fock (CPHF) equations in the MP2 or CC 2 gradient calculation.
An additional auxiliary basis (denoted jkbas ) set has to be assigned via the General Options Menu in the define program. In the submenu rijk choose on and select your auxiliary basis set. Then, run the jobex script the additional rijk-flag:

```
> jobex -level cc2 -rijk
```

Note, that it is at the moment not possible to perform these calculation parallel because the RI-JK approximation is presently not supported in the parallel version of the ridft program.

### 9.4 Transition Moments

Transition moments are presently implemented for excitations out of the ground state and for excitations between excited states for the coupled cluster models CCS and CC2. Transition moments for excitations from the ground to an excited state are also available for $\operatorname{ADC}(2)$, but use an additional approximation (see below). Note, that for transition moments (as for excited-state first-order properties) CCS is not equivalent to CIS and CIS transition moments are not implemented in the ricc2 program.

### 9.4.1 Ground to excited state transition moments

In response theory, transition strengths (and moments) for transitions from the ground to excited state are identified from the first residues of the response functions.

Due to the non-variational structure of coupled cluster different expressions are obtained for the CCS and CC2 "left" and "right" transitions moments $M_{0 \leftarrow f}^{V}$ and $M_{f \leftarrow 0}^{V}$. The transition strengths $S_{V_{1} V_{2}}^{0 f}$ are obtained as a symmetrized combinations of both [109]:

$$
\begin{equation*}
S_{V_{1} V_{2}}^{0 f}=\frac{1}{2}\left\{M_{0 \leftarrow f}^{V_{1}} M_{f \leftarrow 0}^{V_{2}}+\left(M_{0 \leftarrow f}^{V_{2}} M_{f \leftarrow 0}^{V_{1}}\right)^{*}\right\} \tag{9.21}
\end{equation*}
$$

Note, that only the transition strengths $S_{V_{1} V_{2}}^{0 f}$ are a well-defined observables but not the transition moments $M_{0 \leftarrow f}^{V}$ and $M_{f \leftarrow 0}^{V}$. For a review of the theory see refs. [106, 109]. The transition strengths calculated by coupled-cluster response theory according to Eq. (9.21) have the same symmetry with respect to an interchange of the operators $V_{1}$ and $V_{2}$ and with respect to complex conjugation as the exact transition moments. In difference to SCF (RPA), (TD)DFT, or FCI, transition strengths calculated by the coupled-cluster response models CCS, CC2, etc. do not become gauge-independent in the limit of a complete basis set, i.e., for example the dipole oscillator strength calculated in the length, velocity or acceleration gauge remain different until also the full coupled-cluster (equivalent to the full CI) limit is reached.

For a description of the implementation in the ricc2 program see refs. [104. 13]. The calculation of transition moments for excitations out of the ground state resembles the calculation of first-order properties for excited states: In addition to the left and right eigenvectors, a set of transition Lagrangian multipliers $\bar{M}_{\mu}$ has to be determined and some transition density matrices have to be constructed. Disk space, core memory and CPU time requirements are thus also similar.

The single-substitution parts of the transition Lagrangian multipliers $\bar{N}_{\mu}$ are saved in files named CCMEO- $s--m-x x x$.
To obtain the transition strengths for excitations out of the ground state the keyword spectrum must be added with appropriate options (see Section 15.2.13) to the data group \$excitations; else the input is same as for the calculation of excitation energies and first-order properties:

```
$ricc2
 cc2
$excitations
 irrep=a1 nexc=2
 spectrum states=all operators=diplen,qudlen
```

For the $\mathrm{ADC}(2)$ model, which is derived by a perturbation expansion of the expressions for exact states, the calculation of transition moments for excitations from the ground to an excited state would require the second-order double excitation amplitudes for the ground state wavefunction, which would lead to operation counts scaling as $\mathcal{O}\left(\mathcal{N}^{6}\right)$, if no further approximations are introduced. On the other hand the second-order contributions to the transition moments are usually not expected to be important. Therefore, the implementation in the ricc2 program neglects in the calculation of the ground to excited state transition moments the contributions
which are second order in ground state amplitudes (i.e. contain second-order amplitudes or products of first-order amplitudes). With this approximation the $\operatorname{ADC}(2)$ transition moments are only correct to first-order, i.e. to the same order to which also the CC 2 transition moments are correct, and are typically similar to the CC 2 results. The computational costs for the $\mathrm{ADC}(2)$ transition moments are (within this approximation) much lower than for CC 2 since the left and right eigenvectors are identical and no lagrangian multipliers need to be determined. The extra costs (i.e. CPU and wall time) for the calculations of the transitions moments are similar to the those for two or three iterations of the eigenvalue problem, which reduces the total CPU and wall time for the calculation of a spectrum (i.e. excitation energies and transition moments) by almost a factor of three.

### 9.4.2 Transition moments between excited states

For the calculation of transition moments between excited states a set of Lagrangian multipliers $\bar{N}_{\mu}$ has to be determined instead of the $\bar{M}_{\mu}$ for the ground state transition moments. From these Lagrangian multipliers and the left and right eigenvectors one obtaines the "right" transition moment between two excited states $i$ and $f$ as

$$
\begin{equation*}
M_{f \leftarrow i}^{V}=\sum_{p q}\left\{D_{p q}^{\xi}\left(\bar{N}^{f i}\right)+D_{p q}^{A}\left(\bar{E}^{f}, E^{i}\right)\right\} \hat{V}_{p q} . \tag{9.22}
\end{equation*}
$$

where $\hat{V}$ are the matrix elements of the perturbing operator. A similar expression is obtained for the "left" transition moments. The "left" and "right" transition moments are then combined to yield the transition strength

$$
\begin{equation*}
S_{V_{1} V_{2}}^{i f}=\frac{1}{2}\left\{M_{i \leftarrow f}^{V_{1}} M_{f \leftarrow i}^{V_{2}}+\left(M_{i \leftarrow f}^{V_{2}} M_{f \leftarrow i}^{V_{1}}\right)^{*}\right\} \tag{9.23}
\end{equation*}
$$

As for the ground state transitions, only the transition strengths $S_{V_{1} V_{2}}^{i f}$ are a welldefined observables but not the transition moments $M_{i \leftarrow f}^{V}$ and $M_{f \leftarrow i}^{V}$.
The single-substitution parts of the transition Lagrangian multipliers $\bar{N}_{\mu}$ are saved in files named CCNEO- $s--m-x x x$.
To obtain the transition strengths for excitations between excited states the keyword tmexc must be added to the data group \$excitations. Additionally, the initial and final states must be given in the same line; else the input is same as for the calculation of excitation energies and first-order properties:

```
$ricc2
 cc2
$excitations
 irrep=a1 nexc=2
 irrep=a2 nexc=2
 tmexc istates=(a1 1) fstates=all operators=diplen
```


### 9.5 Parallel RI-MP2 and RI-CC2 Calculations

The ricc2 program is partially parallized for distributed memory architectures (e.g. clusters of Linux boxes) based on the message passing interface (MPI) standard. In the present version parallel calculations can be carried out for ground state and excitation energies for all wavefunction models available in ricc2. The analytic gradients for RI-MP2 and RI-CC2 in the ground state and RI-CC2 in excited states are also parallized.
While in general the parallel execution of ricc2 works similar to that of other parallized Turbomole modules (as e.g. dscf and grad), there are some important difference concerning in particular the handling of the large scratch files needed for RI-CC2 (or RI-MP2). As the parallel version dscf also the parallel version of ricc2 assumes that the program is started in a directory which is readable (and writable) on all compute nodes under the same path (e.g. a NFS directory). The directory must contain all input files and will at the end of a calculation contain all output files. Large scratch files (e.g. for integral intermediates) will be placed under the path specified in the control file with \$tmpdir (see Section 15.2.13) which should point to a directory in a file system with a good performance. The parallel version of the ricc2 program can presently account for the following two situations:

Clusters with single processor nodes and local disks: Specify in \$tmpdir a directory in the file system on the local disk. All large files will be places on the nodes in these file systems. (The local file system must have the same name on all nodes)

Clusters with multiple (e.g. dual) processor nodes and local disks Set in addition to \$tmpdir the keyword \$sharedtmpdir to indicate that several processes might share the same local disk. The program will than create in sthe directory given in \$tmpdir subdirectories with node-specific names.

Note that at the end of a ricc2 run the scratch directories specified with \$tmpdir are not guaranteed to be empty. To avoid that they will fill your file system you should remove them after the ricc2 calculation is finished.
Another difference to the parallel HF and DFT (gradient) programs is that ricc2 will communicate much larger amounts of data between the compute nodes. With a fast network interconnection (Gigabit or better) this should not cause any problems, but with slow networks the communication might become the limiting factor for performance or overloading the system. If this happens the program can be put into an alternative mode where the communication of integral intermediates is replaced by a reevaluation of the intermediates (at the expense of a larger operation count) wherever this is feasible. Add for this in the control the following data group:

```
$mpi_param
 min_comm
```


### 9.6 Spin-component scaling approaches (SCS/SOS)

By introducing individually scaling factors to the same-spin and opposite-spin contributions of the correlation energy second-order methods can be modified for a (hopefully) better performance. SCS-MP2 has first been proposed by S. Grimme and SOS-MP2 by Y. Jung et al. (see below). The generalization of SCS and SOS to CC2 for ground and excited states is described in [110]. It uses the same scaling factors as proposed for the original SCS- and SOS-MP2 approaches (see below). In the ricc2 program we have also implemented SCS and SOS variants of CIS(D) for excitation energies and of $\operatorname{CIS}\left(\mathrm{D}_{\infty}\right)$ and $\operatorname{ADC}(2)$ for excitation energies and gradients, which are derived from SCS-CC2 and SOS-CC2 in exactly the same manner as the unmodified methods can be derived as approximations to CC2 (see Sec. 9.2 and ref. [111]). Please note, that the SCS-CIS(D) and SOS-CIS(D) approximations obtained in this way and implemented in ricc2 differ from the spin-component scaled SCS- and SOS-CIS(D) methods proposed by, respectively, S. Grimme and E. I. Ugorodina in [112] and Y. M. Rhee and M. Head-Gordon in 113.

A line with scaling factors has to be added in the \$ricc2 data group:

```
$ricc2
scs cos=1.2d0 css=0.3333d0
```

cos denotes the scaling factor for the opposite-spin component, css the same-spin component.
As an abbreviation
scs
can be inserted in \$ricc2. In this case, the SCS parameters cos=6/5 and css=1/3 proposed S. Grimme (S. Grimme, J. Chem. Phys. 118 (2003) 9095.) are used. These parameters are also recommended in [110] for the SCS variants of CC 2 , $\operatorname{CIS}(\mathrm{D}), \operatorname{CIS}\left(\mathrm{D}_{\infty}\right)$, and $\operatorname{ADC}(2)$ for ground and excited states.
Also, just
sos
can be used as a keyword, to switch to the SOS-MP2 approach proposed by the HeadGordon group with scaling factors of $\cos =1.3$ and $\operatorname{css}=0.0$ (Y., Jung, R.C. Lochan, A.D. Dutoi, and M. Head-Gordon, J. Chem. Phys. 121 (2004) 9793.), which are also recommended for SOS variants of $\mathrm{CC} 2, \operatorname{CIS}(\mathrm{D}), \operatorname{CIS}\left(\mathrm{D}_{\infty}\right)$, and $\mathrm{ADC}(2)$.

## Restrictions:

- the spin $\left(S^{2}\right)$ expectation value for open-shell calculation can not be evaluated in the SCS or SOS approaches


## Chapter 10

## CCSD, $\operatorname{CCSD}(\mathrm{F} 12)$ and CCSD(T) calculations

The ricc2 module includes presently since 2010 also an implementation of the full coupled-cluster singles-and-doubles method CCSD, the explicitly correlated CCSD(F12) and $\operatorname{CCSD}\left(\mathrm{F} 12^{*}\right)$ variants. CCSD and its correlated variants can be combined with a perturbative correction for connected triples, $\operatorname{CCSD}(\mathrm{T})$... Presently the implementation is restricted to ground state energies. Closed-shell (RHF), unrestricted (UHF) or single determinant restricted (ROHF) open-shell reference wavefunctions can be used, but no excitation energies, gradients or properties are (yet) available for these wavefunction models.
Further limitations:
no MPI parallelization , calculations at these levels can presently only carried out on a single compute node, only the OpenMP (see Sec. 3.2.2) parallelization is available for calculations at the $\operatorname{CCSD}$ and $\operatorname{CCSD}(\mathrm{T})$ level.

Please note that calculations with CCSD and methods beyond CCSD require considerably more disc space and core memory than MP2 or CC2 calculations. (See section below for more details and recommendations.)

## Prerequisites

CCSD and $\operatorname{CCSD}(\mathrm{T})$ calculations with the ricc2 module require the same prerequisites as RI-CC2 calculations,

1. a converged SCF calculation with the one-electron density threshold set to \$denconv 1.d-5 or less

[^1]2. an auxiliary basis defined in the data group \$cbas
3. if orbitals should be excluded from the correlation treatment the data group \$freeze has to be set
4. the maximum core memory which the program is allowed to allocate should be defined in the data group \$maxcor; the recommended value is $66-75 \%$ of the available (physical) core memory.
5. the data group $\$$ ricc2 with a specification of the coupled-cluster model

Calculations with the CCSD(F12) methods require in addition:

- the data group \$rir12 with the definition of the standard approximations for the explicitly-correlated contributions (see Sec. 8.5 for details)
- the data group \$lcg, which define the correlation function (here it is in particular important to choose for F12 calculations the exponent; recommended values are 0.9 for cc-pVDZ-F12, 1.0 for cc-pVTZ-F12 and 1.1 for cc-pVQZ-F12 basis sets)
- a complementary auxiliary (CABS) basis set

Furthermore it is recommeded to select in addition an auxiliary JK basis set for the evaluation of the Fock matrix elements. (The rijk menu of define can be used for this.)

## How To Perform a Calculation

As presently no gradients are available, only single-point calculations are possible:

1. Select in define within the menu cc
the wavefunction model (submenu ricc2),
frozen core options (submenu freeze), an auxiliary basis for \$cbas (submenue cbas), the amount of main memory (option memory), and for $\operatorname{CCSD}(\mathrm{F} 12)$ calculations in addition
the F12 options (submenu f12), and
a CABS basis (submenu cabs).
By default a $\operatorname{CCSD}(\mathrm{F} 12)$ with ansatz 2 and geminal amplitudes fixed by the cusp conditions is performed. To switch to the computationally more efficient recommended $\operatorname{CCSD}\left(\mathrm{F} 12^{*}\right)$ approximation add to the input group $\$$ rir12 the lind ${ }^{\dagger}$
[^2]```
ccsdapprox ccsd(f12*)
```

The auxiliary JK basis must be chosed in menu rijk and the exponent for the correlation function must set by editing the \$lcg data group of the control file.
2. Do an SCF calculations using either the dscf or the ridft module.
3. Invoke the ricc2 program on the command line or with a batch script.

10.1 Characteristics of the Implementation and Computational Demands

In CCSD the ground-state energy is (as for CC2) evaluated as

$$
\begin{equation*}
E_{\mathrm{CC}}=\langle\mathrm{HF}| H|\mathrm{CC}\rangle=\langle\mathrm{HF}| H \exp (T)|\mathrm{HF}\rangle, \tag{10.1}
\end{equation*}
$$

where the cluster operator $T=T_{1}+T_{2}$ consist of linear combination of single and double excitations:

$$
\begin{align*}
T_{1} & =\sum_{a i} t_{a i} \tau_{a i} \tag{10.2}\\
T_{2} & =\frac{1}{2} \sum_{a i b j} t_{a i b j} \tau_{a i b j} \tag{10.3}
\end{align*}
$$

In difference to CC 2 , the cluster amplitudes $t_{a i}$ and $t_{a i b j}$ are determined from equations which contain no further approximations apart from the restriction of T to single and double excitations:

$$
\begin{align*}
\Omega_{\mu_{1}} & =\left\langle\mu_{1}\right| \hat{\tilde{H}}+\left[\hat{\tilde{H}}, T_{2}\right]|\mathrm{HF}\rangle=0 \tag{10.4}\\
\Omega_{\mu_{2}} & =\left\langle\mu_{2}\right| \hat{\tilde{H}}+\left[\hat{\tilde{H}}, T_{2}\right]+\left[\left[\hat{H}, T_{2}\right], T_{2}\right]|\mathrm{HF}\rangle=0 \tag{10.5}
\end{align*}
$$

where again

$$
\hat{\tilde{H}}=\exp \left(-T_{1}\right) \hat{H} \exp \left(T_{1}\right),
$$

and μ_{1} and μ_{2} are, respectively, the sets of all singly and doubly excited determinants. Eq. (10.5) is computational much more complex and demanding than the corresponding doubles equations for the CC 2 model. If \mathcal{N} is a measure for the system size (e.g. the number of atoms), the computational costs (in terms of floating point operations) for CCSD calculations scale as $\mathcal{O}\left(\mathcal{N}^{6}\right)$. If for the same molecule the number of one-electron basis functions N is increased the costs scale with $\mathcal{O}\left(\mathcal{N}^{4}\right)$. (For RI-MP2 and RI-CC2 the costs scale with the system size as $\mathcal{O}\left(\mathcal{N}^{5}\right)$ and with the number of basis functions as $\mathcal{O}\left(\mathcal{N}^{3}\right)$.)

Explicitly-correlated CCSD(F12) methods: In explicitly-correlated CCSD calculations the double excitations into products of virtual orbitals, described by $T_{2}=\frac{1}{2} \sum_{a i b j} t_{a i b j} \tau_{a i b j}$, are augmented with double excitations into the explicitlycorrelated pairfunctions (geminals) which are described in Sec. 8.5.

$$
\begin{align*}
T & =T_{1}+T_{2}+T_{2^{\prime}} \tag{10.6}\\
T_{2^{\prime}} & =\frac{1}{2} \sum_{i j k l} c_{i j}^{k l} \tau_{k i l j} \tag{10.7}
\end{align*}
$$

where $\tau_{k i l j}|i j\rangle=\hat{Q}_{12} f_{12}|k l\rangle$ (for the defintion \hat{Q}_{12} and f_{12} see Sec. 8.5). This enhances dramatically the basis set convergence of CCSD calculations ([114]). Without any further approximations than those needed for evaluating the neccessary matrix elements, this extension of the cluster operator T leads to the CCSD-F12 method. CCSD (F12) is an approximation ($\boxed{115, ~ 114]}$) to CCSD-F12 which neglects certain computationally demanding higher-order contributions of $\hat{T}_{2^{\prime}}$. This reduces the computational costs dramatically, while the accuracy of $\operatorname{CCSD}(\mathrm{F} 12)$ is essentially identical to that of CCSD-F12 116, 117. In the CCSD(F12) approximation the amplitudes are determined from the equations:

$$
\begin{align*}
\Omega_{\mu_{1}} & =\left\langle\mu_{1}\right| \hat{\tilde{H}}+\left[\hat{\tilde{H}}, T_{2}+T_{2^{\prime}}\right]|\mathrm{HF}\rangle=0, \tag{10.8}\\
\Omega_{\mu_{2}} & =\left\langle\mu_{2}\right| \hat{\tilde{H}}+\left[\hat{\tilde{H}}, T_{2}+T_{2^{\prime}}\right]+\left[\left[\hat{H}, T_{2}+2 T_{2^{\prime}}\right], T_{2}\right]|\mathrm{HF}\rangle=0, \tag{10.9}\\
\Omega_{\mu_{2^{\prime}}} & =\left\langle\mu_{2^{\prime}}\right|\left[\hat{F}, T_{2^{\prime}}\right]+\hat{\tilde{H}}+\left[\hat{\tilde{H}}, T_{2}\right]|\mathrm{HF}\rangle=0 . \tag{10.10}
\end{align*}
$$

Similar as for MP2-F12, also for $\operatorname{CCSD}(F 12)$ the coefficients for the doubles excitations into the geminals, $c_{i j}^{k l}$ can be determined from the electronic cusp conditions using the rational generator (also known as SP or fixed amplitude) approach. In this case Eq. 10.10 is not solved. To account for this, the energy is then computed from a Lagrange function as:

$$
\begin{equation*}
E_{\mathrm{CCSD}(\mathrm{~F} 12)-\mathrm{SP}}=L_{\mathrm{CCSD}(\mathrm{~F} 12)}=\langle\mathrm{HF}| H|\mathrm{CC}\rangle+\sum_{\mu_{2^{\prime}}} c_{\mu_{2^{\prime}}} \Omega_{\mu_{2^{\prime}}} \tag{10.11}
\end{equation*}
$$

This is the recommended approach which is used by default if not any other approch has been chosen with the examp option in $\$$ rir12 (see Sec. 8.5 for further details on the options for F12 calculations; note that the examp noinv option should not be combined with CCSD calculations). CCSD(F12)-SP calculations are computationally somewhat less expensive that $\operatorname{CCSD}(\mathrm{F} 12)$ calculations which solve Eq. (10.10), while both approaches are approximately similar accurate for energy differences.
The SP approach becomes in particular very efficient if combined with the neglect of certain higher-order explicitly-correlated contributions which have a negligible effect on the energies but increase the costs during the CC iterations. The most accurate and recommeded variant is the $\operatorname{CCSD}(\mathrm{F} 12 *)$ approximation [118], which gives essentially identical energies as CCSD(F12). Also available are the CCSD[F12] (Ref. [118]), CCSD-F12a (Ref. [119]) and CCSD-F12b (Ref. [120) approximations as well as the perturbative corrections $\operatorname{CCSD}(2)_{\overline{\mathrm{F} 12}}$ and $\operatorname{CCSD}(2)_{\overline{\mathrm{F} 12 *}}$ (see Refs.
[121, 122, 118). Note that these approximations should only be used with ansatz 2 and the SP approach (i.e. fixed geminal amplitudes).
The CPU time for a $\operatorname{CCSD}(\mathrm{F} 12)$ calculation is approximately the sum of the CPU time for an MP2-F12 calculation with the same basis sets plus that of a conventional CCSD calculation multiplied by $\left(1+N_{C A B S} / N\right)$, where N is the number of basis and $N_{C A B S}$ the number of complementary auxiliary basis (CABS) functions (typically $\left.N_{C A B S} \approx 2-3 N\right)$. If the geminal coefficients are determined by solving Eq. 10.10) instead of using fixed amplitudes, the costs per $\operatorname{CCSD}(\mathrm{F} 12)$ iteration increase to $\approx\left(1+2 N_{C A B S} / N\right)$ the costs for conventional CCSD iteration. Irrespective how the geminal coefficients are determined, the disc space for CCSD(F12) calculations are approximated a factor of $\approx\left(1+2 N_{C A B S} / N\right)$ larger than the disc space required for a conventional CCSD calculation. Note that this increase in the computational costs is by far outweighted by the enhanced basis set convergence.
In combination with the $\operatorname{CCSD}\left(\mathrm{F} 12^{*}\right)$ approximation (and also CCSD[F12], CCSDF12a, CCSD-F12b, $\operatorname{CCSD}(2)_{\overline{\mathrm{F} 12}}$ and $\left.\operatorname{CCSD}(2)_{\overline{\mathrm{F} 12 *}}\right)$ the CPU time for the SP approach is only about 20% or less longer than for a conventional CCSD calculation within the same basis set.

CC calculations with restricted open-shell (ROHF) references: The MP2 and all CC calculations for ROHF reference wavefunctions are done by first transforming to a semi-canonical orbital basis which are defined by the eigenvectors of the occupied/occupied and virtual/virtual blocks of the Fock matrices of alpha and beta spin. No spin restrictions are applied in the cluster equations. This approach is sometimes also denoted as ROHF-UCCSD.
Note that if a frozen-core approximation is used, the semicanonical orbitals depend on whether the block-diagonalization of the Fock matrices is done in space of all orbitals or only in the space of the correlated valence orbitals. The two approaches lead thus to slightly different energies, but none of two is more valid or more accurate than the other. The ricc2 program uses the former scheme with the block-diagonalization done in the space of all molecular orbitals. The same scheme is used e.g. in the CFOUR program suite, but other codes as e.g. the implementation in MOLPRO use a block-diagonalization restricted to the active valence space.

Perturbative triples corrections: To achieve ground state energies a high accuracy which systematically surpasses the acccuracy MP2 and DFT calculations for reaction and binding energies, the CCSD model should be combined with a perturbative correction for connected triples. The recommended approach for the correction is the $\operatorname{CCSD}(\mathrm{T})$ model

$$
\begin{equation*}
E_{\mathrm{CCSD}(\mathrm{~T})}=E_{\mathrm{CCSD}}+E_{D T}^{(4)}+E_{S T}^{(5)} \tag{10.12}
\end{equation*}
$$

which includes the following two terms:

$$
\begin{align*}
E_{D T}^{(4)} & =\sum_{\mu_{2}} t_{\mu_{2}}^{C C S D}\left\langle\mu_{2}\right|\left[H, T_{3}^{(2)}\right]|\mathrm{HF}\rangle \tag{10.13}\\
E_{S T}^{(5)} & =\sum_{\mu_{1}} t_{\mu_{1}}^{C C S D}\left\langle\mu_{2}\right|\left[H, T_{3}^{(2)}\right]|\mathrm{HF}\rangle \tag{10.14}
\end{align*}
$$

where the approximate triples amplitudes evaluated as:

$$
\begin{equation*}
t_{a i b j c k}^{(2)}=-\frac{\left\langle{ }_{a b c}^{i j k}\right|\left[\hat{H}, T_{2}\right]|\mathrm{HF}\rangle}{\epsilon_{a}-\epsilon_{i}+\epsilon_{b}-\epsilon_{j}+\epsilon_{c}-\epsilon_{k}} \tag{10.15}
\end{equation*}
$$

In the literature one also finds sometimes the approximate triples model CCSD[T] (also denoted as CCSD $+\mathrm{T}(\mathrm{CCSD})$), which is obtained by adding only $E_{D T}^{(4)}$ to the CCSD energy. Usually $\operatorname{CCSD}(\mathrm{T})$ is slightly more accurate than $\operatorname{CCSD}[\mathrm{T}]$, although for closed-shell or spin-unrestricted open-shell reference wavefunctions the energies of both models, $\operatorname{CCSD}(\mathrm{T})$ and $\operatorname{CCSD}[\mathrm{T}]$ model, are correct through 4.th order perturbation theory. For a ROHF reference, however, $E_{S T}^{(5)}$ contributes already in 4.th order and only the $\operatorname{CCSD}(\mathrm{T})$ model is correct through 4.th order perturbation theory.

Integral-direct implementation and resolution-of-the-identity approximation: The computationally most demanding (in terms floating point operations) steps of a CCSD calculation are related to two kinds of terms. One of the most costly steps is the contraction

$$
\begin{equation*}
\Omega_{a i b j}^{B}=\sum_{c d} t_{c i d j}(a c \mid b d) \tag{10.16}
\end{equation*}
$$

where a, b, c, and d are virtual orbitals. For small molecules with large basis sets or basis sets with diffuse functions, where integral screening is not effective, it is time-determing step and can most efficiently be evaluated with a minimal operation count of $\frac{1}{2} O^{2} V^{2}$ (where O and V are number of, respectively occupied and virtual orbitals), if the 4 -index integrals $(a c \mid b d)$ in the MO are precalculated and stored on file before the iterative solution of the coupled-cluster equation, 10.4 and 10.5 . For larger systems, however, the storage and I/O of the integrals ($a c \mid b d$) leads to bottlenecks. An alternatively, this contribution can be evaluated in an integral-direct was as

$$
\begin{equation*}
t_{\kappa i \lambda j}=\sum_{c d} t_{c i, d j} C_{\kappa c} C_{\lambda d}, \quad \Omega_{\mu i \nu j}^{B}=\sum_{\kappa \lambda} t_{\kappa i \lambda j}(\mu \kappa \mid \nu \lambda), \quad \Omega_{a i b j}^{B}=\sum_{\mu \nu} \Omega_{\mu i \nu j}^{B} C_{\mu a} C_{\nu b} \tag{10.17}
\end{equation*}
$$

which, depending on the implementation and system, has formally a $2-3$ times larger operation count, but allows to avoid the storage and I/O bottlenecks by processing the 4 -index integrals on-the-fly without storing them. Furthermore, integral screening techniques can be applied to reduce the operation count for large systems to asymptotic scaling with $\mathcal{O}\left(\mathcal{N}^{4}\right)$.

In TURBOMOLE only the latter algorithm is presently implemented. (For small systems other codes will therefore be faster.)
The other class of expensive contributions are so-called ring terms (in some publications denoted as C and D terms) which involve contractions of the doubles amplitudes $t_{a i b j}$ with several 4-index MO integrals with two occupied and two virtual indeces, partially evaluated with T_{1}-dependent MO coefficients. For these terms the implementation in TURBOMOLE employs the resolution-of-the-identity (or densityfitting) approximation (with the cbas auxiliary basis set) to reduce the overhead from integral transformation steps. Due this approximation CCSD energies obtained with TURBOMOLe will deviate from those obtained with other coupled-cluster programs by a small RI error. This error is usually in the same order or smaller the RI error for a RI-MP2 calculation for the same system and basis sets.
The RI approximation is also used to evaluate the 4-index integrals in the MO basis needed for the perturbative triples corrections.

Disc space requirements: In difference to CC2 and MP2, the CCSD model does no longer allow to avoid the storage of double excitation amplitudes $\left(t_{a i b j}\right)$ and intermediates of with a similar size. Thus, also the disc space requirements for the CCSD calculation are larger than for RI-MP2 and RI-CC2 calculation for the same system. For a (closed-shell) CCSD ground state energy calculations the amount of disc space needed can be estimated roughly as

$$
\begin{equation*}
N_{\text {disk }} \approx\left(4 N^{3}+\left(4+m_{D I I S}\right) O^{2} N^{2}\right) /(128 \times 1024) \text { MBytes } \tag{10.18}
\end{equation*}
$$

where N is the number of basis functions, O the number of occupied orbitals and $m_{\text {DIIS }}$ the number of vectors used in the DIIS procedure (by default 10, see Sec. 15.2 .13 for details).
For (closed-shell) $\operatorname{CCSD}(\mathrm{T})$ calculations the required disc space is with

$$
\begin{equation*}
N_{d i s k} \approx\left(5 N^{3}+5 O^{2} N^{2}+O N^{3}\right) /(128 \times 1024) \text { MBytes }, \tag{10.19}
\end{equation*}
$$

somewhat larger.
For calculations with an open-shell (UHF or ROHF) reference wavefunctions the above estimates should be multiplied by factor of 4 .

Memory requirements: The CCSD and $\operatorname{CCSD}(\mathrm{T})$ implementation in Turbomole uses multi-pass algorithms to avoid strictly the need to store any arrays with a size of N^{3} or $O^{2} N^{2}$ or larger as complete array in main memory. Therefore, the minimum memory requirements are relatively low-although is difficult to give accurate estimate for them.

On should, however, be aware that, if the amount of memory provided to the program in the data group $\$$ maxcor becomes too small compared to $O^{2} N^{2} /(128 \times 1024)$ MBytes, loops will be broken in many small batches at the cost of increased I/O operations and a decrease in performance. As mentioned above, it is recommended to set \$maxcor to $66-77 \%$ of the physical core memory available for the calculation.

Important options: The options to define the orbital and the auxiliary basis sets, the maximum amount allocatable core memory (\$maxcor), and the frozen-core approximation (\$maxcor) have been mentioned above and described in the previous chapters on MP2 and CC2 calculations. Apart from this, CCSD and CCSD(T) calculations require very little additional input.
Relevant are in particular some options in the \$ricc2 data group:

```
$ricc2
    ccsd
    ccsd(t)
    conv=7
    oconv=6
    mxdiis=10
    maxiter=25
```

The options ccsd and ccsd(t) request, respectively, CCSD and $\operatorname{CCSD}(\mathrm{T})$ calculations. Since $\operatorname{CCSD}(\mathrm{T})$ requires the cluster amplitudes from a converged CCSD calculation, the option $\operatorname{ccsd}(\mathrm{t})$ is implies the ccsd option.
The number given for mxdiis defines the maximum number of vectors included in the DIIS procedure for the solution of the cluster equations. As mentioned above, it has some impact on the amount of disc space used by a CCSD calculation. Unless disc space becomes a bottleneck, it is not recommended to change the default value.
With maxiter one defines the maximum number of iterations for the solution of the cluster equations. If convergence is not reached within this limit, the calculation is stopped. Usually 25 iterations should be sufficient for convergence. Only in difficult cases with strong correlation effects more iterations are needed. It is recommended to increase this limit only if the reason for the strong correlation effects is known. (Since one reason could also be an input error as e.g. unreasonable geometries or orbital occupations as a wrong basis set assignment.)
The two parameters conv and oconv define the convergence thresholds for the iterative solution of the cluster equations. Convergence is assumed if the change in the energy (with respect to the previous iteration) has is smaller than $10^{- \text {conv }}$ and the euclidian norm of the residual (the so-called vector function) is smaller than $10^{-o c o n v}$. If conv is not given in the data group \$ricc2 the threshold for changes in the energy is set to value given in \$denconv (by default 10^{-7}). If oconv is not given in the data group \$ricc2 the threshold for the residual norm is by default set to 10 times the threshold changes in the energy. With the default settings for these thresholds, the energy will thus be converged until changes drop below 10^{-7} Hartree, which typically ensures an accuracy of about $1 \mu \mathrm{H}$. These setting are thus rather tight and conservative even for the calculation of highly accurate reaction energies. If for your application larger uncertainites for the energy are tolerable, it is recommended to use less tight thresholds, e.g. conv=6 or conv=5 for an accuracy of, respectively, at least $0.01 \mathrm{mH}(0.03 \mathrm{~kJ} / \mathrm{mol})$ or $0.1 \mathrm{mH}(0.3 \mathrm{~kJ} / \mathrm{mol})$. The settings for conv (and oconv) have not only an impact on the number of iterations for the
solution of the cluster equations, but as they determine the thresholds for integral screening also to some extend on the costs for the individual iterations.

Chapter 11

Calculation of Vibrational Frequencies and Vibrational Spectra

Calculation of second derivatives of total energies leads to the molecular Hessian, which enables prediction of vibrational frequencies and infrared spectra (within the harmonic approximation) as well as the application of improved algorithms for geometry optimization and transition state search.
The aoforce module calculates analytically harmonic vibrational frequencies within the HF- or (RI)DFT-methods for closed-shell- and spin-unrestricted open-shellsystems. Broken occupation numbers would lead to results without any physical meaning. Note, that RI is only used partially, which means that the resulting Hessian is only a (very good) approximation to exact second derivatives of the RIDFTenergy expression. Apart from a standard force constant calculation which predicts all (symmetry allowed and forbidden) vibrational transitions, it is also possible to specify certain irreps for which the calculation has to be done exclusively or to select only a small number of lowest eigenvalues (and eigenvectors) that are generated at reduced computational cost.
Furthermore, the Numforce script allows the calculation of second derivatives for all methods for which a program for analytic gradients is available in TURBOMOLE, i.e. the main use of this script is the prediction of vibrational spectra at the MP2 level and for excited states using RI-CC2 or TDDFT.

If force constant calculations result in imaginary frequencies, molecular distortions along these normal modes should lower the energy. To distort the molecule, use the interactive module vibration, output of the new coordinates is done to the general input file on \$newcoord.
Vibrational frequencies also enable calculation of the molecular partition function and thus prediction of thermodynamic functions at temperatures other than 0 K
and finite pressure (within the assumption of an ideal gas and no coupling between degrees of freedom). These functions can be obtained with the interactive module Freeh, results are printed to standard I/O.

Prerequisites

1. Both aoforce and even more Numforce require well converged SCF-/DFTcalculations (e.g. \$scfconv 8 and jobex [-ri] -gcart 4).
2. The maximum core memory the program aoforce is allowed to allocate should be defined in the data group \$maxcor; the recommended value is about 50% of the available (physical) core memory (in case of RI-calculations subtract the memory specified in \$ricore).
3. To start aoforce in the lowest eigenvalue search mode, use the keyword $\$ 1$ es. For its use as well as other keywords dealing with the calculation of only some irreps, see the Referenceguide part of this manual.
4. Numforce additionally requires the file gradient and will not work, if the calculation is not done at a stationary point of the molecular total energy. For reliable results, always use Numforce with the option -central (i.e. central differences) and be aware of effects due to the step length (option -d real;, default value is 0.02 a.u.). It is strongly recommended to use Numforce in DFT calculations only with the option weight derivatives in \$dft, since this provides more accurate gradients and thus frequencies, see Section 15.2.8.
5. The Numforce script can be run for different levels of theory, which means that the binaries it calls have to be specified additionally. To perform calculations using the RI approximation, call Numforce with the option -ri. MP2 and CC 2 calculations are requested via the options -level mp2 and -level cc2, respectively. To select the correct option(s), use the explanations you get by calling NumForce -h.

For a review of theory and implementation see refs. 123, 124.

Limitations

The aoforce code has presently a number of limitations one should be aware of:

- It can only handle basis sets up to at most g functions.
- Point groups with reducible E-representations (such as C_{n} and $C_{n h}$ with $n \geq 3$, S_{n} with $n \geq 5$, or T and T_{d})
- Frozen internal or cartesian coordinates are not recognized. aoforce will allways evaluate the full hessian matrix.

11.1 Analysis of Normal Modes in Terms of Internal Coordinates

A note in advance: The analysis of normal modes can (at nearly no computational cost) always be redone as long as you keep a copy of the file hessian.

A general prerequisite for this option is that you have defined a set of non-redundant coordinates for all $3 \mathrm{~N}-6$ ($3 \mathrm{~N}-5$) degrees of freedom of your molecule. To make sure that this is the case, you should switch off redundant coordinates (currently, this is only possible by manually removing the data group \$redundant and also removing the entry redundant on in \$optimize). Run define to generate non-redundant coordinates by using the iaut command in the internal coordinate menu (or by creating them manually via idef). We recommend to use the irem command first to delete all previous definitions of internal coordinates. See Section 4 for further details. If the molecules point group is not C_{1}, define will set some of the coordinate to status d (display) or i (ignore). Use the ic command to change all coordinates to k . You can also achieve this by editing in the \$intdef data-group manually.
The analysis in internal coordinates is switched on by adding a line in the data-group \$drvopt that has the following syntax:

```
analysis [only] intcoord [print print-level]
```

Keywords in square brackets are optional. If only is added, the program assumes that the file hessian exists and runs only the analysis part of aoforce. The program will give the following output (controlled by the print level given in parenthesis):

- diagonal elements of the Hessian in internal coordinates (force constants of bonds, angles, etc.) (print level 0)
- complete force constant matrix in internal coordinates (print level 2)
- normal modes in terms of internal coordinates (print level 1)
- Potential energy contributions $\tilde{V}_{i j}^{n}$, defined as

$$
\tilde{V}_{i j}^{n}=L_{i}^{n} L_{j}^{n} F_{i j} / \omega^{n}
$$

where L_{i}^{n} are the elements of the normal coordinate belonging to mode n and $F_{i j}$ are the elements of the force constant matrix, both expressed in the internal coordinate basis; ω is the related eigenvalue. The program will list the diagonal contributions $\tilde{V}_{i i}^{n}$ (print level 1), the off-diagonal contributions $\tilde{V}_{i j}^{n}+\tilde{V}_{j i}^{n}=2 \tilde{V}_{i j}^{n}$ (print level 2 for up to 10 atoms, else print level 10) and the brutto contributions $\sum_{i} \tilde{V}_{i j}^{n}$ (print level 1).

- Based on these quantities, the program will give an assignment of normal modes by listing all internal coordinates with large diagonal or brutto contributions (print level 0).

Note that for large molecules or complicated topologies the B-matrix (that is used to transform from Cartesian coordinates into internal coordinates and vice versa) may become singular. In this case only the normal modes in the internal coordinate basis can be listed.

11.2 Calculation of Raman Spectra

Vibrational Raman scattering cross sections are computed in the approximation of the polarizability theory from derivatives of the frequency-dependent polarizability tensor with respect to normal modes of vibration,

$$
\left(\frac{d \sigma}{d \Omega}\right)=k_{\omega}\left(c_{i} \alpha^{\prime 2}(\omega)+c_{a} \gamma^{\prime 2}(\omega)\right) .
$$

Here, $\alpha^{\prime 2}(\omega)$ and $\gamma^{\prime 2}(\omega)$ denote the isotropic part and the anisotropy of the differentiated polarizability tensor, respectively. The coefficients c_{i} and c_{a} depend on the scattering geometry and the polarization of the incident and scattered radiation. The factor

$$
k_{\omega}=\frac{\hbar}{4 \pi \epsilon_{0}^{2} c^{4}} \frac{\left(\omega-\omega_{v}\right)^{4} g_{v}}{2 \omega_{v}}
$$

includes the frequency ω_{v} and the degeneracy g_{v} of the vibration. c is speed of light and ϵ_{0} stands for the dielectric constant of vacuum.

Computation of Raman spectra with TURBOMOLE is a three-step procedure. First, vibrational frequencies and normal modes are calculated by aoforce. Cartesian polarizability derivatives are computed in the second step by egrad, see Section 7.4.7. Finally, the program intense is used to project the polarizability derivatives onto vibrational normal modes and to compute Raman scattering cross sections which are written out along with vibrational frequencies and normal modes. The script Raman can be used to perform all these steps automatically.

11.3 Vibrational frequencies with fixed atoms using NumForce

The NumForce script provides with the option -frznuclei a possibility to do a vibrational analysis with fixed atoms. The atoms for which the cartesian coordinates should frozen have to be marked in \$coord with a " f " behind the atom type. The frozen coordinates will be skipped during the numerical evaluation of the force constant matrix; instead all off-diagonal elements of the force constant matrix which refer to one or two frozen coordinates will be set to zero, while the diagonale elements for the frozen coordinates will be set to an arbitrarly chosen large value.

This feature is mainly intended to allow for a vibrational analysis in embbeded cluster calculations e.g. for defects in ionic crystals. The vibrational analysis uses a kind of "frozen phonon" approximation which corresponds to setting the masses of the fixed atoms to infinity, i.e. decoupling the fixed atoms mechanically from the "mechanically active" subsystem. The resulting vibrational frequencies will thus only
provide good approximations to the true (harmonic) frequencies for such modes for which the mechanical coupling to the embedding environment is negligible. In particular the frequencies of stretch modes which involve bonds between the "mechanically active" subsystem and atoms with frozen coordinates will be strongly affected by this approximation.
Note:

- The -frznuclei is not compatible with the polyhedral difference algorithm. It can only be used with central differences which should be enforced with the -central option.
- If the option -frznuclei is switched on, the program assumes that the constraints enforced by fixing coordinates remove the six external degrees of freedom for on overall rotation or translation of the system and therefore the hessian matrix is not projected onto the subspace of internal coordinates. Fixing the coordinates of only one or two atoms might does lead to some artifical small, but non-zero frequencies.
- Zero-point vibrational energies calculated with the -frznuclei option are only meaningful for comparison of systems with the same mechanically active atoms and similar embedding, as the contributions from the frozen coordinates are not included.

Chapter 12

Calculation of NMR Shieldings

The program mpshift calculates nuclear magnetic shielding constants using the GIAO (Gauge Including Atomic Orbital) method.
At present the following methods are implemented:
HF-SCF the coupled perturbed Hartree-Fock (CPHF) equations in the AO basis are solved using a semi-direct iterative algorithm [125] similar to dscf.

DFT using either non-hybrid functionals where no iterations are needed 126 or hybrid functionals where the same algorithm as at the HF-SCF level is used.

MP2 semi-direct method, see ref. [17].

12.1 Prerequisites

1. mpshift needs converged MO vectors from a SCF or DFT run (dscf or ridft)
2. for SCF or DFT calculations, no specifications have to be made in the control file
3. it is not possible to run the program in the fully direct mode when doing an SCF, MP2 or a DFT (using hybrid functionals) run, so you will have to perform a statistics run of dscf before calling mpshift, or just set the size of the \$twoint file to a non-zero value
4. to perform an MP2 calculation of the NMR shieldings you have to prepare the input with mp2prep -c

12.2 How to Perform a SCF of DFT Calculation

All you have to do for running mpshift is typing mpshift at the shell level.

The results of a SCF or DFT calculation (the trace of the total shielding tensors, its anisotropy and the CPHF contribution for each symmetry distinct atom) are written into the control file after the keyword $\$ \mathrm{nmr}<r h f / \mathrm{dft}>$ shielding constants.

This data group is write only for mpshift, but you can utilize it for graphical rendering of the calculated NMR spectra and for a quick overview of the results. A more detailed output with the complete shielding tensors can be found in the output of mpshift, so it is recommended to put the output in a file when calling the program.

12.3 How to Perform a MP2 calculation

To perform an MP2 calculation of the NMR shieldings you have to prepare the input with mp2prep -c.
mpshift will then calculate both the SCF and MP2 shielding constants. The result is written into the control file after the keyword $\$ \mathrm{nmr}$ mp2 shielding constants.

The script mp2prep will create the keywords

```
$csmp2
$thize .10000000E+10
$mointunit
    type=intermed unit=61 size=0 file=halfint
    type=1112 unit=63 size=0 file=moint#1
    type=1122 unit=64 size=0 file=moint#j
    type=1212 unit=65 size=0 file=moint#k
    type=1212a unit=70 size=0 file=moint#a
    type=gamma#1 unit=71 size=0 file=gamma#1
    type=gamma#2 unit=72 size=0 file=gamma#2
    type=dtdb#1 unit=76 size=0 file=dtdb#1
    type=dtdb#2 unit=77 size=0 file=dtdb#2
$traloop 1
$statistics mpshift
```

and starts a statistics run of mpshift (by calling mpshift). If the resulting disk space requirement exceeds the automatically detected free disk space on your system, it will increase $\$$ traloop and run a statistics run again. This will be done as long as your free disk space is not sufficient for the calculation.

If the mp2prep script fails to run on your system, try to use the -p option or do the procedure described above by hand. Call mp2prep -h for more informations about mp2prep.

12.4 Chemical Shifts

NMR shifts are obtained by comparing nuclear shieldings of your test compound with a reference molecule $\left(\delta_{\text {subst }}=\delta_{\text {ref }}+\sigma_{\text {ref }}-\sigma_{\text {subst }}\right)$. Therefore you have to choose a reference molecule with a well-known shift for which you can easily calculate the absolute shielding constant. This implies a certainty about the geometry, too. Furthermore you have to use the very same basis set for corresponding atoms to minimize the basis set influence.

Keywords for the module Mpshift

A list of keyword for the module mpshift can be found in Section 15.2.19.

12.5 Other Features and Known Limitations

- the mpshift program can be restarted at any stage of computing, since all intermediate results are written into the file restartcs. In case of an external program abort you have to remove the \$actual step flag (by the command actual -r or using an editor). mpshift analyses this file and decides where to continue
- ECPs can not be used since the electrons in the ECP cores are not taken into account
- molecular point groups that contain reducible e representations are not supported ($\mathrm{C}_{n}, \mathrm{C}_{n h}$ with $n>2$)
- as in mpgrad, basis sets with a contraction that is greater than 10 are currently not supported
- PBE and PBE0 DFT functionals are not implemented in mpshift

Chapter 13

Molecular Properties, Wavefunction Analysis, and Interfaces to Visualization Tools

13.1 Wavefunction analysis and Molecular Properties

Molecular properties (electrostatic moments, relativistic corrections, population analyses for densities and MOs, construction of localized MOs, etc.) can be calculated with the module moloch. Note that this program does not support unrestricted open-shell input (a script called moloch2 can currently be used as a work-around; type moloch2 -help for further information). Moreover, analyses of densities apart from those calculated from molecular orbitals (e.g. MP2 densities, densities of excited states) are not possible. For the current version of moloch we refer to the keywords listed in Section 15.2 .16 which partly can also be set by define (see also Chapter 4).

Note: moloch is no longer supported, but
most functionalities of moloch now are integrated in programs that generate MOs or densities and can be done directly within the modules dscf, ridft, rimp2, mpgrad, ricc2 and egrad. If (some of) following keywords are set, corresponding operations will be performed in the end of these programs. If one desires to skip the MO- or density generating step, in case of programs dscf, ridft, rimp2 and mpgrad it is possible to directly jump to the routine performing analyses by typing "<program> -proper". Currently, the respective keywords have to be inserted in the control file by hand (not by define).

Here we briefly present the functionalities (i.e. the default use of keywords), nondefault suboptions are described in detail in Section 15.2.17.

Electrostatic moments: up to quadrupole moments are calculated by default for the above modules.

Relativistic corrections: \$mvd leads to calculation of relativistic corrections for the SCF total density in case of dscf and ridft, for the SCF+MP2 density in case of rimp2 and mpgrad and for that of the calculated excited state in case of egrad. Quantities calculated are expectation values $\left\langle p^{2}\right\rangle,\left\langle p^{4}\right\rangle$ and the Darwin term $\left(\sum 1 / Z_{A} * \rho\left(R_{A}\right)\right)$. Note, that at least the Darwin term requires an accurate description of the cusp in the wave function, thus the use of basis sets with uncontracted steep basis functions is recommended. Moreover note, that when using of ECPs these quantities are not too reasonable (a respective warning is written to the output).

Population analyses: Population analyses are driven by the keyword \$pop.
Without any extension Mulliken population analyses (MPA) are carried out for all densities present in the respective program, e.g. total (and spin) densities leading to Mulliken charges (and unpaired electrons) per atom in RHF(UHF)-type calculations in dscf or ridft, SCF +MP2 densities in rimp2 or mpgrad, excited state densities in egrad. Suboptions (see Section 15.2.17) also allow for calculation of Mulliken contributions of selectable atoms to selectable MOs including provision of data for graphical output (simulated density of states).

With \$pop nbo a Natural Population Analysis (NPA) [127] is done. Currently only the resulting charges are calculated.

With \$pop paboon a population analyses based on occupation numbers [128] is performed yielding "shared electron numbers (SENs)" and multicenter contributions. For this method always the total density is used, i.e. the sum of alpha and beta densities in case of UHF, the SCF +MP2-density in case of MP2 and the GHF total density for (two-component-)GHF. Note that the results of such an analysis may depend on the choice of the number of modified atomic orbitals ("MAOs"). By default, numbers of MAOs which are reasonable in most cases are taken (see Section 15.2.17). Nevertheless it is warmly recommended to carefully read the information concerning MAOs given in the output before looking at the numbers for atomic charges and shared electron numbers. For different ways of selecting MAOs see Section 15.2.17.

Generation of localized MOs: \$localize enables calculation of localized molecular orbitals. Per default a Boys localization including all occupied MOs is carried out (i.e. the squared distance of charge centers of different LMOs is maximized). As output one gets localized MOs (written to files lmos or lalp /lbet in UHF cases), informations about dominant contributions of canonical MOs to LMOs and about location of LMOs (from Mulliken PA) are written to standard output.

Fit of charges due to the electrostatic potential: \$esp_fit fits point charges at the positions of nuclei to electrostatic potential arising from electric charge dis-
tribution (for UHF cases also for spin density, also possible in combination with $\$$ soghf). For this purpose the ("real") electrostatic potential is calculated at spherical shells of grid points around the atoms. By default, Bragg-Slater radii, $r_{B S}$, are taken as shell radii.

A parametrization very close to that suggested by Kollman (a multiple-shell model with shells of radii ranging from $1.4^{*} r_{v d W}$ to $2.0^{*} r_{v d W}, r_{v d W}$ is the van-der-Waals radius; U.C. Singh, P.A. Kollman, J. Comput. Chem. 5(2), 129-145 (1984)) is used if the keyword is extended:
\$esp_fit kolman

13.2 Interfaces to Visualization Tools

Visualization of Molecular Geometry

The tool t2x can be used to convert the atomic coordinates stored in the \$grad and $\$$ coord data groups into the xyz-format, which is supported by most viewers, e.g. jmol (http://jmol.sourceforge.net/). Typing
t2x > opt.xyz
in a directory containing the control file generates a series of frames using the information of \$grad. Note t2x writes to standard output which here is redirected to a file. If you are only interested in the most recent structure, type
t2x -c > str. xyz
which only extracts the information on \$coord.

Visualization of Densities, MOs, Electrostatic Potentials and Fields

There are several possibilities to visualize molecular orbitals or densities. tm2molden simply converts MO and geometry information to molden format. The conversion program is interactive and self-explanatory. The generated file can be visualized using either molden (http://www.cmbi.ru.nl/molden/molden.html) or molekel (http://www.cscs.ch/molekel/). For larger systems this may become very timeconsuming, as plotting data (values on grids) are calculated by the respective programs (molden, molekel). It is more efficient to calculate the data for plots (MO amplitudes, densities, etc.) by TURBOMOLE modules and to use a visualization tool afterwards, a way, that is described in the following.

Calculation of data on grids to be used for plots with visualization tools (e.g. gOpenMol, available via http://www.csc.fi/gopenmol/) is driven by the keyword \$pointval. This keyword is evaluated by all density matrix generating TURBOMOLE
modules, i.e. by dscf, ridft, rimp2 mpgrad, ricc2 (see Section 9.3.3) and egrad. Note, that all of the following quantities may be calculated simultaneusly, and that for programs dscf, ridft, rimp2 and mpgrad the density matrix generating steps may be skipped by typing "<program> -proper".

Electron densities For the above mentioned programs setting of keyword

\$pointval dens

or simply

\$pointval

yields calculation of densities

$$
\begin{equation*}
\rho\left(\vec{R}_{P}\right)=\sum_{\nu \mu} D_{\nu \mu} \phi_{\nu}\left(\vec{R}_{P}\right) \phi_{\mu}\left(\vec{R}_{P}\right) \tag{13.1}
\end{equation*}
$$

dens
on an orthogonal grid $\left(R_{P}\right)$, the size of which is automatically adjusted to the size of the molecule and the resolution is adjusted to yield acceptable gOpenMol plots (for specification of non-default grid types (planes, lines) and non-default output formats see Section 15.2.17.
Names of output files are:

```
td.plt total density (UHF: }\alpha\mathrm{ density plus }\beta\mathrm{ density )
sd.plt spin density ( }\alpha\mathrm{ density minus }\beta\mathrm{ density )
mp2d.plt MP2 density
mp2sd.plt MP2 spin density
ed.plt differential density for excited state
esd.plt differential spin density for excited state
```

<myname>.plt general density passed e.g. by the ricc2 program.

The .plt files may directly be visualized by gOpenMol; the file coord.xyz, which is also necessary for gOpenMol, is generated by the above programs, if \$pointval is set in the control-file.

Two-component wave functions (only module ridft and only if \$soghf is set): Total density is on file td.plt like for one-component wave functions; this is also true for all other quantities depending only on the density matrix (electrostatic potential etc.). sd.plt contains the absolute value of the spin vector density, which is the absolute value of the following vector:

$$
s_{i}(\mathbf{r})=\left(\begin{array}{cc}
\Psi_{\alpha}^{*} & \Psi_{\beta}^{*}
\end{array}\right) \boldsymbol{\sigma}_{i}\binom{\Psi_{\alpha}}{\Psi_{\beta}} \quad i=x, y, z
$$

\$pointval fmt=txt
leads to a file containing the spin vector density vectors, which can be used by gOpenMol. It is advisable to choose ca. one Bohr as the distance between two gridpoints.

Electrostatic potentials In an analogous way electrostatic potentials can be calculated on grids.
\$pointval pot
leads to calculation of the electrostatic potential of electrons and nuclei (and external constant electric fields and point charges Q if present).

$$
\begin{equation*}
V\left(\vec{R}_{P}\right)=-\int \frac{\rho(\vec{r})}{r_{P r}} \mathrm{~d}^{3} \vec{r}+\sum_{A} \frac{Z_{A}}{R_{P A}}+\left(\vec{R}_{P} \vec{E}+\sum_{Q} \frac{Q}{R_{P Q}}\right) \tag{13.2}
\end{equation*}
$$

In order to prevent the calculation of singularities at the positions of nuclei, for gridpoints that are closer to a nucleus than 10^{-6} a.u. the charge of the respective nucleus is omitted in the calculation of the electrostatic potential for these points. The output files are termed tp.plt, sp.plt, etc.

Electric fields (as derivatives of potentials) are calculated by
\$pointval fld
The absolute values of electric fields are written to files $t f . p l t, s f . p l t$, etc. For non-default grid types and outputs that allow also for displaying of components of electric fields see Section 15.2 .17 .

Exchange-correlation potentials (Only for DFT) Computation of the KohnSham exchange-correlation potential on a grid
\$pointval xc

Canonical molecular orbitals. Visualization of molecular orbitals, i.e. generation of .plt-files containing amplitudes of MOs i

$$
\begin{equation*}
A_{i}\left(\vec{R}_{P}\right)=\sum_{\nu} c_{i \nu} \phi_{\nu}\left(\vec{R}_{P}\right) \tag{13.3}
\end{equation*}
$$

or in the two-component case

$$
\begin{equation*}
A_{i}^{\Gamma}\left(\vec{R}_{P}\right)=\sum_{\nu} c_{i \nu}^{\Gamma} \phi_{\nu}\left(\vec{R}_{P}\right) \tag{13.4}
\end{equation*}
$$

with Γ as a part of the coefficient matrix $(\operatorname{Re}(\alpha), \operatorname{Im}(\alpha), \operatorname{Re}(\beta), \operatorname{Im}(\beta))$, is achieved e.g. by
\$pointval mo 10-12,15

This yields amplitudes for MOs/spinors 10-12 and 15 on the default grid. The numbering of MOs refers to that you get from the first column of the output of the tool Eiger, the one for spinors refers to the file EIGS. The filenames contain the type of the irreducible representation (irrep) of the MO, the current number within this irrep and in case of UHF calculations also the spin, e.g. 2a1g_a.plt contains amplitudes for the second alpha-spin MO of $\mathrm{a}_{1 g}$ type. For more-dimensional irreps columns are written to separate files, e.g. 1t2g1_a.plt, 1t2g2_a.plt and 1 t2g3_a.plt contain the amplitutes of the three columns of the first irrep (alpha spin) of type $\mathrm{t}_{2 g}$.
Two-component wavefunctions (only module ridft and only if \$soghf is set): By default only the density of the chosen spinors is written in files named e.g. 10a_d.plt. Visualization of the amplitudes of the different spinor parts is achieved e.g. by
\$pointval mo 10-12,15 minco real,
where real is a plotting threshold that may take values between zero and one. The corresponding part Γ of the spinor $(\operatorname{Re}(\alpha, \operatorname{Im}(\alpha, \operatorname{Re}(\beta, \operatorname{Im}(\beta))$ will be written to file, if N^{Γ} (see below) is larger than that threshold.

$$
\begin{aligned}
N^{\Gamma} & =\operatorname{tr}\left(\mathbf{D}^{\Gamma} \mathbf{S}\right) \\
D_{\mu \nu}^{\Gamma} & =\sum_{i} c_{i \nu}^{\Gamma *} c_{i \mu}^{\Gamma}
\end{aligned}
$$

The filenames consist of the number of the spinor according to file EIGS and an additional number for the respective part Γ of the spinor $(1$ for $\operatorname{Re}(\alpha), 2$ for $\operatorname{Im}(\alpha)$, 3 and 4 for the corresponding β-parts) e.g. 10a_4.plt for the $\operatorname{Im}(\beta)$ of spinor 10 .

Localised molecular orbitals If one has generated localized molecular orbitals (LMOs, see above) they can also be visualized.
\$pointval lmo 3-6,8
as an example, leads to calculation of amplitudes for LMOs 3-6 and 8. The coefficients are read from file lmos (UHF: lalp and lbet), the numbering is due to the output from the localizaton section. For an UHF case this means: If you included in the localization procedure e.g. 5α-type orbitals and 3β-type orbitals, then, if you are interested in plotting the β-type LMOs only, you have to type

```
$pointval lmo 6-8
```

Natural molecular orbitals for two-component wavefunctions (only module ridft and only if \$soghf is set): In two-component calculations it is often useful to visualize natural molecular orbitals. In contrast to one-component calculations the occupation numbers are no longer close to zero, one or two, but can take any value between zero and two. Therefor

```
$natural orbitals file=natural
$natural orbital occupation file=natural
```

has to be set additionally to \$soghf (also possible via define).
By setting
\$pointval nmo 9
in control-file a gOpenMol-compatible file named nmo_9.plt is written.

Natural atomic orbitals If one has generated natural molecular orbitals (NAOs, see above) they can be visualized with the following command in the control file:
\$pointval nao 7-9,12
where the numbers of the NAOs are in the output of the population analysis.

Non-default grids are decribed in detail in Sections 15.2.17. Calculation of the above quantities at single points is needed quite often, thus an example is given here.

```
$pointval geo=point
7 3
0 7
123
```

calculates densities at points $(7,5,3),(0,0,7)$ and $(1,2,3)$. Output is ($\mathrm{x}, \mathrm{y}, \mathrm{z}$, density), output file suffix is .xyz.

We note in passing that calculation of electrostatic potential at positions of nuclei may be used as an efficient tool to distinguish atoms of similiar atomic numbers thus providing a complement to X-Ray Structure Analysis (details see ref. [129]).

Chapter 14

Treatment of Solvation Effects with Cosmo

The Conductor-like Screening Model [130] (cosmo) is a continuum solvation model (CSM), where the solute molecule forms a cavity within the dielectric continuum of permittivity ε that represents the solvent. The charge distribution of the solute polarizes the dielectric medium. The response of the medium is described by the generation of screening charges on the cavity surface.
CSMs usually require the solution of the rather complicated boundary conditions for a dielectric in order to obtain the screening charges. cosmo instead uses the much simpler boundary condition of vanishing electrostatic potential for a conductor,

$$
\boldsymbol{\Phi}^{t o t}=0 .
$$

This represents an electrostatically ideal solvent with $\varepsilon=\infty$. The vector of the total electrostatic potential on the cavity surface segments is determined by the solute potential $\boldsymbol{\Phi}^{\text {sol }}$, which consist of the electronic and the nuclear part, and the vector of the screening charges \mathbf{q},

$$
\boldsymbol{\Phi}^{t o t}=\boldsymbol{\Phi}^{s o l}+\mathbf{A q}=0
$$

\mathbf{A} is the Coulomb matrix of the screening charge interactions. For a conductor, the boundary condition $\boldsymbol{\Phi}^{\text {tot }}=0$ defines the screening charges as

$$
\mathbf{q}=-\mathbf{A}^{-1} \boldsymbol{\Phi}^{s o l} .
$$

To take into account the finite permittivity of real solvents, the screening charges are scaled by a factor.

$$
\begin{aligned}
f(\varepsilon) & =\frac{\varepsilon-1}{\varepsilon+\frac{1}{2}} \\
\mathbf{q}^{\star} & =f(\varepsilon) \mathbf{q}
\end{aligned}
$$

The deviation between the cosmo approximation and the exact solution is rather small. For strong dielectrics like water it is less than 1%, while for non-polar solvents with $\varepsilon \approx 2$ it may reach 10% of the total screening effects. However, for weak dielectrics, screening effects are small and the absolute error therefore typically amounts to less than one $\mathrm{kcal} / \mathrm{mol}$. The dielectric energy, i.e. the free electrostatic energy gained by the solvation process, is half of the solute-solvent interaction energy.

$$
E_{\text {diel }}=\frac{1}{2} f(\varepsilon) \mathbf{q}^{\dagger} \boldsymbol{\Phi}^{\text {sol }}
$$

The total free energy of the solvated molecule is the sum of the energy of the isolated system calculated with the solvated wave function and the dielectric energy

$$
E=E\left(\Psi^{\text {solv }}\right)+E_{\text {diel }} .
$$

A cosmo energy calculation starts with the construction of the cavity surface grid. Within the SCF procedure, the screening charges are calculated in every cycle and the potential generated by these charges is included into the Hamiltonian. This ensures a variational optimization of both the molecular orbitals and the screening charges and allows the evaluation of analytic gradients.

Radii based Cavity Construction: In order to ensure a sufficiently accurate and efficient segmentation of the molecular shaped cavity the COSMO implementation uses a double grid approach and segments of hexagonal, pentagonal, and triangular shape. The cavity construction starts with a union of spheres of radii $R_{i}+R S O L V$ for all atoms i. In order to avoid problems with symmetric species, the cavity construction uses de-symmetrized coordinates. The coordinates are slightly distorted with a co-sinus function of amplitude AMPRAN and a phase shift PHSRAN. Initially a basis grid with NPPA segments per atom is projected onto atomic spheres of radii $R_{i}+R S O L V$. In order to avoid the generation of points in the problematic intersections, all remaining points, which are not in the interior of another sphere, are projected downwards onto the radius R_{i}. In the next step a segment grid of NSPH segments per H atom and NSPA segments for the other atoms is projected onto the surface defined by R_{i}. The basis grid points are associated to the nearest segment grid centers and the segment coordinates are re-defined as the center of area of their associated basis grid points, while the segment area is the sum of the basis grid areas. Segments without basis grid points are discarded. In order to ensure nearest neighbor association for the new centers, this procedure is repeated once. At the end of the cavity construction the intersection seams of the spheres are paved with individual segments, which do not hold associated basis grid points.

Density based Cavity Construction: Instead of using atom specific radii the cavity can be defined by the electron density. In such an isodensity cavity construction one can use the same density value for all atoms types or the so-called scaled isodensity values. In the later approach different densities are used for the different atom types. The algorithm implemented in Turbomole uses a marching
tetrahedron algorithm for the density based cavity construction. In order to assure a smooth density change in the intersection seams of atoms with different isodensity specification, this areas are smoothened by a radii based procedure.

A-Matrix Setup: The A matrix elements are calculated as the sum of the contributions of the associated basis grid points of the segments k and l if their distance is below a certain threshold, the centers of the segments are used otherwise. For all segments that do not have associated basis grid points, i.e. intersection seam segments, the segment centers are used. The diagonal elements $A_{k k}$ that represent the self-energy of the segment are calculated via the basis grid points contributions, or by using the segment area $A_{k k} \approx 3.8 \sqrt{a_{k}}$, if no associated basis grid points exist.

Outlying charge correction: The part of the electron density reaching outside the cavity causes an inconsistency that can be compensated by the "outlying charge correction". This correction will be performed at the end of a converged SCF or an iterative MP2 calculation and uses an outer surface for the estimation of the energy and charge correction [131]. The outer surface is constructed by an outward projection of the spherical part of the surface onto the radius $R_{i}+R O U T F * R S O L V$. It is recommended to use the corrected values.

Numerical Frequency Calculation: The calculation of harmonic frequencies raises the problem of non-equilibrium solvation in the cosmo framework, because the molecular vibrations are on a time scale that do not allow a re-orientation of the solvent molecules. Therefore, the total response of the continuum is split into a fast contribution, described by the electronic polarization, and a slow term related to the orientational relaxation. As can be shown (132) the dielectric energy for the disturbed state can be written as

$$
E_{\text {diel }}^{d}=\frac{1}{2} f(\varepsilon) \mathbf{q}\left(\mathbf{P}^{0}\right) \boldsymbol{\Phi}\left(\mathbf{P}^{0}\right)+\frac{1}{2} f\left(n^{2}\right) \mathbf{q}\left(\mathbf{P}^{\Delta}\right) \boldsymbol{\Phi}\left(\mathbf{P}^{\Delta}\right)+f(\varepsilon) \mathbf{q}\left(\mathbf{P}^{0}\right) \boldsymbol{\Phi}\left(\mathbf{P}^{\Delta}\right),
$$

where \mathbf{P}^{Δ} denotes the density difference between the distorted state and the initial state with density \mathbf{P}^{0}. The interaction is composed of three contributions: the initial state dielectric energy, the interaction of the potential difference with the initial state charges, and the electronic screening energy that results from the density difference. The energy expression can be used to derive the correspondent gradients, which can be applied in a numerical frequency calculation. Because the cosmo cavity changes for every distorted geometry the initial state potential has to be mapped onto the new cavity in every step. The mapped potential of a segment of the new cavity is calculated from the distance-weighted potentials of all segments of the old cavity that fulfill a certain distance criterion. The mapped initial state screening charges are re-calculated from the new potential.

Iterative MP2 Cosmo: For ab initio MP2 calculations within the CSM framework three alternatives can be found in the literature 133. The first approach, often
referred to as PTE, performs a normal MP2 energy calculation on the solvated HF wave function. The response of the solvent, also called reaction field, is still on the HF level. It is the only of the three approaches that is formally consistent in the sense of second-order perturbation theory 134,135 . In the so-called PTD approach the vacuum MP2 density is used to calculate the reaction field. The third approach, often called PTED, is iterative so that the reaction field reflects the density of the first-order wave function. In contrast to the PTE approach the reaction field, i.e. the screening charges, change during the iterations until self consistency is reached. Gradients are available on the formally consistent PTE level only [136].

Vertical excitations and Polarizabilities: The escf program accounts for the Cosmo contribution to the excitation energies and polarizabilities. The Cosmo settings have to be defined for the underlying Cosmo dscf or ridft calculation. In case of the excitation energies the solvent response will be divided into the so-called slow and fast term [132, 137]. The screening function of the fast term depends on the refractive index of the solvent which can be defined in the input. If only the Cosmo influence on the ground state should be taken into account we recommend to perform a normal Cosmo calculation (dscf or ridft) and to switch off Cosmo (i.e. deactivate \$cosmo) before the escf calculation.

216 CHAPTER 14. TREATMENT OF SOLVATION EFFECTS WITH COSMO

Chapter 15

Keywords in the control file

15.1 Introduction

The file control is the input file for TURBOMOLE which directly or by cross references provides the information necessary for all kinds of runs and tasks. control is usually generated by define, the input generator. This chapter provides a short-hand documentation: a list of the most important key words, the possible parameters for each keyword, default values, and a brief explanation.

15.2 Format of Keywords and Comments

TURBOMOLE input is keyword-directed. Keywords start with a '\$', e.g. \$title. Comments may be given after \$dummy, or by a line starting with \#; these lines are ignored by TURBOMOLE. Blank lines are also ignored. Keywords may be in any order unless stated otherwise below.

The sample inputs given below should help to give an idea how the keywords are to be used. They are sorted according to program. Complete control files are provided in Chapter 16. An alphabetical list of all keywords is given in the index.

15.2.1 General Keywords

\$operating system unix
\$path
\$lock off
\$suspend off

The four keywords above are set by define, but are not necessary.
\$statistics dscf
or
\$statistics mpgrad
Only a statistics run will be performed to determine file space requirements as specified for dscf or mpgrad. On return the statistics option will be changed to \$statistics off.
\$actual step dscf
means current step. Keyword and data group (as e.g. dscf) is set by every program and removed on successful completion.

```
$last step relax
```

Keyword and data group (as e.g. relax) set by every program on successful completion.
General file cross-references:

| \$coord | file=coord |
| :--- | :---: |
| \$intdef | file=coord |
| \$user-defined bonds file=coord | |
| \$basis | file=basis |
| \$ecp | file=basis |
| \$jbas | file=auxbasis |
| \$scfmo | file=mos |
| \$uhfmo_alpha | file=alpha |
| \$uhfmo_beta | file=beta |
| \$natural orbitals | |
| \$natural orbital occupation file=natural | |
| \$energy | file=energy |
| \$grad | file=gradient |
| \$forceapprox | file=forceapprox |

It is convenient not to include all input in the control file directly and to refer instead to other files providing the corresponding information. The above cross references are default settings from define; you may use other file names. define will create most of these files. Examples of these files are given below in the samples.

\$coord (and \$intdef and \$userdefined bonds)

contains atom specification-type and location-and the bonds and internal coordinates convenient for geometry optimizations.

\$basis

specification of basis sets.
\$ecp specification of effective core potentials.
\$jbas
auxiliary (fitting) basis for the Coulomb terms in ridft.
\$scfmo, \$uhfmo_alpha, \$uhfmo_beta
MO vectors of SCF or DFT calculations for RHF or UHF runs.
\$natural orbitals, \$natural orbital occupation
keywords and data groups set by unrestricted dscf or ridft runs. Contain natural MO vector and orbital occupation.
\$energy, \$grad
energies and gradients of all runs, e.g. for documentation in a geometry optimizations.

\$forceapprox

approximate force constant for geometry optimizations.

The control file must end with this keyword:
\$end

15.2.2 Keywords for System Specification

General information defining the molecular system: nuclear coordinates, symmetry, basis functions, number of occupied MOs, etc. which are required by every module.
\$title
give title of run or project here.
\$symmetry d4h
Schönflies symbol of the point group. All point groups are supported with the exception of NMR shielding and force constant calculations etc. which do not work for groups with complex irreps ($C_{3}, C_{3} h, T$, etc). Use a lower symmetry group in this case.
\$atoms
Example:

\$atoms

cu 1-4 basis =cu ecp-18 arep jbas =cu ecp-18 ecp =cu ecp-18 arep
se $5-6$ basis =se ecp-28 arep dzp jbas =se ecp-28 ecp =se arep
note the backslash \: this is necessary. For each type of atom, one has to specify

- the basis set
- and the auxiliary (fitting) basis for RIDFT calculations
- the ECP if this is used.

The files basis, ecp and jbas must provide the necessary information under the labels specified in \$atoms.

\$pople char

This data group specifies the number of Cartesian components of basis functions (i.e. 5 d and 7 f in AO-Basis, 6 d and 10 f in CAO-Basis) for which the SCF calculation should be performed. Possible values for char are $A O$ (default) or $C A O$. If CAO is used - which is not recommended - a core guess must be used instead of a Hückel guess (see \$scfmo).

RHF

\$closed shells

Specification of MO occupation for RHF, e.g.

| a1g | $1-4$ | | |
|---|---|---|---|
| a2g | 1 |\quad| (2) |
| :--- |

\$open shells type=1
MO occupation of open shells and number of open shells. type $=1$ here means that there is only a single open shell consisting e.g. of two MOs:

```
    b2g 1
    ( 1 )
    b3g 1
( 1 )
    $roothaan 1
    a = 1 b = 2
```

\$roothaan

Roothaan parameters for the open shell, here a triplet case. define recognizes most cases and suggests good Roothaan parameters.

For further information on ROHF calculations, see the sample input in Section 16.6 and the tables of Roothaan parameters in Section 6.3 .

UHF

\$uhf directs the program to carry out a UHF run,e.g.

| \$alpha shells | | |
| :---: | :---: | :---: |
| a1g | 1-4 | (1) |
| a2g | 1 | (1) |
| \$beta shells | | |
| a1g | 1-4 | (1) |
| a2g | 1 | (1) |

The specification of MO occupation for UHF, \$uhf overwrites closed-shell occupation specification.

15.2.3 Keywords for redundant internal coordinates in \$redund_inp

With the parameters in \$redund_inp the generation of redundant internal coordinates can be modified. All entries have to be made in the control file before invoking the ired option. Important options are:
iprint n
print parameter for debug output: The larger n is, the more output is printed $n \geq 0, n \leq 5$ (default: 0)
metric n
method for generating and processing of redundant internal coordinates $n \geq-3, n \leq 3, n \neq 0$ (default: 3)

Values for the metric option:
$\mathrm{n}=1 \quad$ "Delocalized Coordinates"
The $\mathbf{B m B}{ }^{\mathbf{t}}$ matrix is diagonalized for the complete set of redundant internal coordinates, matrix \mathbf{m} is a unit matrix.
$\mathrm{n}=-3$ Delocalized Coordinates obtained with a modified matrix \mathbf{m}, the values of \mathbf{m} can be defined by user input (see below).
$\mathrm{n}=-1$ "Hybrid Coordinates"
Natural internal coordinates are defined as in the old iaut option. If a cage remains, delocalized coordinates (as for $\mathrm{n}=1$) are defined for the cage.
$\mathrm{n}=-2$ Very simular to the $n=1$ option, but for the remaining cage delocalized coordinates with modified matrix \mathbf{m} are defined as for $n=-3$.
$\mathrm{n}=2$ "Decoupled coordinates"
The redundant coordinates are divided into a sequence of blocks. These are expected to have decreasing average force constants, i.e. stretches, angle coordinates, torsions and "weak" coordinates. The $\mathbf{B B}^{\mathbf{t}}$ matrix is diagonalized for each block separately after the columns of \mathbf{B} were orthogonalized against the columns of \mathbf{B} of the the preceding blocks.
$\mathrm{n}=3$ "Generalized natural coordinates"
Natural internal coordinates are defined first, for the remaining cage decoupled coordinates are defined.
type r
a positive real number, which is an approximate "force constant", can be read in for each type of coordinate (see below). The force constants are used for the definition of the matrix \mathbf{m} in $\mathbf{B m B}^{\mathbf{t}}$.

Types of internal coordinates for the definition of m

The matrix \mathbf{m} is assumed to be a diagonal matrix. For each type of coordinate a different value for the force constants $m_{i i}$ can be read in. Types of coordinates are:
stre bond stretch (default: 0.5)
invr inverse bond stretch (default: 0.5)
bend bond angle (default: 0.2)
outp Out of plane angle (default: 0.2)
tors dihedral or "torsional" angle (default: 0.2)
linc Special angle coordinate for collinear chains, bending of the chain $\mathrm{a}-\mathrm{b}-\mathrm{c}$ in the plane of $\mathrm{b}-\mathrm{c}-\mathrm{d}$ (default: 0.2)
linp bending of the chain $\mathrm{a}-\mathrm{b}-\mathrm{c}$ perpendicular to the plane of $\mathrm{b}-\mathrm{c}-\mathrm{d}$ (default: 0.2)
wstr stretch of a "weak" bond, i.e. the bond is assumed to have a very low force constant, e.g. a "hydrogen bond" or a "van der Waals bond" (default: 0.05)
winv inverse stretch of a weak bond (default: 0.05)
wbnd bond angle involving at least one weak bond (default: 0.02)
wout Out of plane angle for weak bonds (default: 0.02)
wtor dihedral angle for weak bonds (default: 0.02)
wlnc linc coordinate for weak bonds (default: 0.02)
wlnp linp coordinate for weak bonds (default: 0.02)

15.2.4 Keywords for Module UfF

One has to specify only the Cartesian coordinates (data group \$coord) to start a uff run. The program uff requires the data groups \$uff, \$ufftopology, \$uffgradient and \$uffhessian. If these keywords do not exist in the control file the program will generate these data groups.
The data group \$uff contains the parameters described below. The default valuesin the control file - are:

| 1 | 1 | 0 |
| ---: | ---: | :--- |
| 111111 | | ! maxcycle, modus, nqeq |
| $0.10 \mathrm{D}-07$ | $0.10 \mathrm{D}-04$ | iterm |
| 0.00 | 1.10 | ! econv, gconv |
| $0.10 \mathrm{D}+03$ | $0.10 \mathrm{D}-04$ | 0.30 |
| 25 | 0.10 | 0.00 ! epssteep, epssearch, dqmax |
| 1.00 | 0.00 | 0.00 ! alpha, beta, gamma |
| F | F | F ! transform,lnumhess,lmd |

The explanation of the variables are as follows:
maxcycle
number of max. optimization cycles (maxcycle=1: single-point calculation).
modus
can have the values +1 or -1 . If modus $=-1$ only the topology will be calculated.
nqeq each nqeq cycle the partial charges will be calculated. If nqeq $=0$, then the partial charges are calculated only in the first cycle, if the file ufftopology does not exist.

iterm

switch for the different types of force field terms:
100000 bond terms will be calculated.
010000 angle terms will be calculated.
001000 torsion terms will be calculated.
000100 inversion terms will be calculated.
000010 non bonded van der Waals terms will be calculated.
000001 non bonded electrostatic terms will be calculated.
econv, gconv
convergence criteria for energy and gradient.
qtot total charge of the molecule.
dfac distance parameter to calculate the topology. If the distance between the atoms I and J is less than the sum of the covalent radii of the the atoms multiplied with dfac, then there is a bond between I and J.
epssteep
if the norm of the gradient is greater than epssteep, a deepest-descent-step will be done.
epssearch
if the norm of the gradient is smaller than epssearch, no line-search step will be done after the Newton step.
dqmax max. displacement in a.u. for a coordinate in a relax step.
mxls, dhls, ahls
parameters of linesearch:
ahls start value
dhls increment
mxls number of energy calculations
alpha, beta, gamma
modification parameter for the eigenvalues of the Hessian (see below): $f(x)=$ $x *($ alpha + beta $* \exp (-$ gamma $* x))$.
transform
a switch for the transformation in the principal axis system.

Inumhess

a switch for the numerical Hessian.
lmd a switch for a MD calculation.

Input Data Blocks Needed by UfF

\$coord

cartesian coordinates of the atoms (default: \$coord file=coord)

\$ufftopology

contains a list of the next neigbours of each atom (see Section 15.2.4). Sometimes it is useful to enter the connectivity (in the input block nxtnei12 in the file ufftopology) by hand (not always necessary; default: \$ufftopology file=ufftopology).

Beyond this uff reads the force field parameters for the atoms from the file parms.in. If this file exists in the directory from which one starts an uff calculation the program will use this file, if not the program reads the data from the file \$TURBODIR/uff/parms.in.

If one wants own atom types, one has to add these atoms types in the file parms.in. For each new atom type one has to specify the natural bond distance, the natural bond angle, the natural non-bond distance, the well depth of the Lennard-Jones potential, the scaling factor ζ, the effective charge, torsional barriers invoking a pair of sp^{3} atoms, torsional barriers involving a pair of sp^{2} atoms, generalized MullikenPauling electronegativities, the idem potentials, characteristic atomic size, lower bound of the partial charge, upper bound of the partial charge. Distances, energies and charges are in atomic units and angles are in rad.

UfF Output Data Blocks

\$coord

contains the (updated) cartesian coordinates of the atoms (default: \$coord file=coord).

\$ufftopology

contains the full information of the topology of the molecule and the whole force field terms (see below; default: \$ufftopology file=ufftopology).

\$uffgradient

contains the accumulated cartesian analytical gradients (default: \$uffgradient file=uffgradient).

\$uffhessian

contains the cartesian analytical Hessian;
(default: \$uffhessian file=uffhessian0-0).

The file ufftopology

The topology file ufftopology contains the blocks nxtnei12, nxtenei13, nxtnei14, connectivity, angle, torsion, inversion, nonbond and qpartial. It starts with \$ufftopology and ends with \$end. The first three blocks (nxtnei12, nxtnei13, nxtnei14) have the same form: they start with the atom number and the number of its neighbours, in the next line are the numbers of the neighbour atoms. Then the connec-tivity-block follows starting with the number of bond terms. Each line contains one bond term:

$$
\begin{array}{llll}
I & J & \mathrm{~d} & \mathrm{BO} .
\end{array}
$$

Here are I and J the number of the atoms, d the distance in a.u. and BO is the bond order.

The angle terms follow, starting with the number of the angle terms. In each line is one angle term:

$$
\begin{array}{lllllll}
J & I & K & \text { wtyp } & \theta & n r_{J I} & n r_{I K} .
\end{array}
$$

Here are J, I and K the atoms number, where atom I is in the apex. "wtyp" is the angle type and has the following values:
wtyp $=1 \quad$ linear case
wtyp $=2 \quad$ trigonal planar case
wtyp $=3 \quad$ quadratic planar case
wtyp $=6 \quad$ octahedral case
wtyp $=9 \quad$ all other cases.
θ is the angle value in degree. $n r_{J I}$ and $n r_{I K}$ are the number of the bonds between J and I and the bond between I and K. The hybridization of atom I determines "wtyp".
Then the torsion terms follow, starting with the number of the torsion terms. Each line contains one torsion term:

$$
\begin{array}{ccccccccc}
I & J & K & L & n r_{J K} & \operatorname{ttyp} & \phi & \theta_{I J K} & \theta_{J K L} .
\end{array}
$$

Here are I, J, K and L the atom numbers. $n r_{J K}$ is the number of the bond between J and K. "ttyp" is the torsion type:
ttyp $=1 \quad J\left(\mathrm{sp}^{3}\right)-\mathrm{K}\left(\mathrm{sp}^{3}\right)$
ttyp $=11 \quad$ like ttyp $=1$, but one or both atoms are in Group 16
ttyp $=2 \quad J\left(\mathrm{sp}^{2}\right)-\mathrm{K}\left(\mathrm{sp}^{3}\right)$ or vice versa
ttyp $=21$ like ttyp=2, but one or both atoms are in Group 16
ttyp $=22 \quad$ like ttyp $=2$, but J or K is next a sp^{2} atom
ttyp $=3 \quad J\left(\mathrm{sp}^{2}\right)-\mathrm{K}\left(\mathrm{sp}^{2}\right)$
ttyp $=9 \quad$ all other cases.
ϕ is the value of the torsion angle in degree. $\theta_{I J K}$ is the angle value of $(I-J-K)$ and $\theta_{J K L}$ is the cwone for $J-K-L$. The hybridizations of J and K determine "ttyp".

The inversion terms follow starting with the number of inversion terms (e.g. the pyramidalisation of NH_{3}). In each line is one inversion term:

$$
\begin{array}{llllllllll}
I & J & K & L & \text { ityp1 } & \text { ityp2 } & \text { ityp3 } & \omega_{1} & \omega_{2} & \omega_{3} .
\end{array}
$$

I, J, K and L are the atom numbers. Atom I is the central one. ityp1, ityp2, ityp3 are the types of the inversions:
ityp $=10 \quad$ atom I is C and atom L is O
ityp $=11 \quad$ like ityp $=10$, but L is any atom
ityp $=2 \quad I$ is P

$$
\begin{array}{ll}
\text { ityp }=3 & I \text { is As } \\
\text { ityp }=4 & I \text { is } \mathrm{Sb} \\
\text { ityp }=5 & I \text { is } \mathrm{Bi} \\
\text { ityp }=9 & \text { all other cases. }
\end{array}
$$

ω_{1}, ω_{2} and ω_{3} are the values of the inversion angles in degree.
The nonbond terms follow starting with the number of the non-bonded terms. In each line is one nonbond term:

$$
I \quad J \quad \mathrm{~d} .
$$

Here I and J are the atom numbers, d the distance in a.u. Then the partial charges follow.

If the determination of the molecule connectivity failed, you can specify the block nxtnei12 in the file ufftopology. Then the program calculates the other blocks.
Based on the numbers of the next neighbours (block nxtnei12 in the file ufftopology) the program tries to determine the UFF type of an atom. The following rules are implemented: If the atom has three next neighbours and it is in the nitrogen group, then it has a hybridization three. If it is not in the nitrogen group, it has hybridization two. If the atom has four next neighbours and it is in the carbon group, it has hybridization three. If it is not in the carbon group, it becomes hybridization four. If the number of next neighbours is six, then it gets the hybridization six.

Since the smallest eigenvalues λ_{i} of the Hessian has the greatest influence on the convergence of the geometry optimization, one can shift these values with

$$
\tilde{\lambda}_{i}=\lambda_{i} \cdot\left(\alpha+\beta \cdot e^{-\gamma x}\right)
$$

and calculates a new Hessian with these modified eigenvalues.

15.2.5 Keywords for Modules Dscf and Ridft

\$denconv real
Convergency criterion for the root mean square of the density matrix. If you want to calculate an analytical MP2 gradient (program mpgrad) real should be 1.d-7 or less.

\$dft options

Listing of all possible sub-keywords for $\$ \mathrm{dft}$ (cross-references are given).
The user normally has to choose only the functional and the grid size, see below. All other parameters have proven defaults.
functional name
Specification of the functional, default is BP86, printed as functional
b-p. For all possible -and useful-functionals, please refer to page 242 and for definition of the functionals the section 6.2 on page 118 .
Example (default input):
\$dft
functional b-p
gridsize integer or minteger
Specification of the spherical grid (see section 15.2 .5 on page 242). Default is gridsize m3.
Example:
\$dft
gridsize m3
gridtype integer -not recommended for use -
Specification of the mapping of the radial grid.
Possible values for gridtype are $1, \ldots, 6$, but gridtype 4 to 6 is only for the use with functional lhf (see page 245). For the definition of gridtype 1 - 3, please refer to Eq. (16), (17) and, (19) in Ref. [138].
Example (default value):
\$dft
gridtype 3
debug integer
Flag for debugging. debug 0 means no debug output (default), debug 1 means some output, debug 2 means a lot more output. Be careful!
nkk integer
Specification of the sharpness of the partition function as proposed by Becke [139], default is nkk 3. The usage of nkk makes sense only in the range $1 \leq \mathrm{nkk} \leq 6$.
Example:
\$dft
nkk 3
ntheta integer - not recommended for use-
nphi integer
Only for user-specified Lobatto grids, i.e. gridsize 9, ntheta specifies the number of θ points and nphi specifies the number of ϕ points. For the fixed Lobatto grid, i.e. gridtype 8, the default value is ntheta 25 and nphi 48.
When gridsize 9 is given, you have to specify both, ntheta and nphi (see below), otherwise the program will crash. The restriction for userdefined Lobatto grids is the number of grid points, which must not exceed 2000 grid points.
Example:

```
$dft
    gridsize 9
    ntheta 30
    nphi 60
```

old_RbCs_xi

Original grids had not been carefully optimized for all atoms individually. This has now been done, which let to changes of ξ for Rb and Cs only resulting in minor improvements. If you have ongoing projects, which have been started with the old grids, you should continue using them with the keyword old_RbCs_xi.
Example:
\$dft
old_RbCs_xi
radsize integer
Specifies the number of radial grid points. Default values depend on type of atom and grid (see keyword gridsize). The formula for the radial gridsize is given as,

$$
\text { number of radial grid points }=\operatorname{ioffrad}+(\text { radsize }-1) * 5 .
$$

ioffrad is atom-dependent, the more shells of electrons, the larger ioffrad:

| elements | ioffrad | elements | ioffrad |
| :--- | :--- | :--- | :--- |
| for $\mathrm{H}-\mathrm{He}$ | 20 | for $\mathrm{K}-\mathrm{Kr}$ | 40 |
| for $\mathrm{Li}-\mathrm{Ne}$ | 25 | for $\mathrm{Rb}-\mathrm{Xe}$ | 45 |
| for $\mathrm{Na}-\mathrm{Ar}$ | 30 | for $\mathrm{Cs}-\mathrm{Lw}$ | 50 |

The radial grid size increases further for finer grids:

| gridsize | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| radsize | 1 | 2 | 3 | 6 | 8 | 10 | 14 | 9 | 3 |

If you want to converge results with respect to radial grid size, increase radsize in steps of 5 , which is convenient (see equation above).
diffuse integer
Serves to increase quadrature grids; this is recommended in case of very diffuse wavefunctions. With the keyword diffuse grids are modified by changing the linear scaling factor ξ of radial grid points and the radial gridsize:
radsize \Longrightarrow radsize + incr
$\xi \Longrightarrow \xi^{*}$ scal

| diffuse integer | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| incr | 1 | 2 | 3 | 4 | 5 | 6 |
| scal | 1.5 | 2.0 | 2.8 | 4.0 | 5.0 | 6.0 |

For information about the linear scaling parameter ξ, see Eq. (16)-(19) and Table 1 in Ref. [138].
In addition, the reduction of spherical grid points near nuclei is suppressed, i.e. fullshell on is set (see page 231).
Note: the keyword radsize integer overrules the setting of incr; for more information, see p. 229 .

Recommendation: For diffuse cases use gridsize m4 (or larger) in combination with diffuse 2 and check the number of electrons; for more difficult cases use diffuse 4. In case of doubt, verify the calculation with a larger grid, i.e. gridsize 7 .
The test suite example \$TURBODIR/TURBOTEST/dscf/short/H3PO4.DSCF .DIFFUSE
provides an example of usage; this also gives reasonable values for damping and orbitalshift to reach convergence in this and similar cases, see \$scfdamp and \$scforbitalshift (p. 236 and p. 239).
Example (Recommendation):
\$dft
gridsize m4
diffuse 2
rhostart integer
rhostop integer
-for developers only-
Radial grid points have a linear scaling parameter ξ, see Eq.(16)-(19) and Table 1 in Ref. [138]. With the following input,

\$dft

rhostart 50
rhostop 200
one performs a numerical integration for the density and the exchange correlation term for $\xi=0.5,(0.01), 2.0$ for given MOs and functional. NOTE: only molecules with a single atom type can be used. The results serve to establish stable, optimal ξ values, see Figure 1 in Ref. [138]. Program stops after this testing.
reference
Usage of the reference grid, which is a very fine grid with very tight thresholds. The default values for the different variables are:

```
gridsize 7
```

radsize 14
fullshell 1
dgrenze 16

```
fgrenze 16
qgrenze 16
fcut 16
```

Please refer to the corresponding sub-keywords for explanation.
If you want to use the reference grid, you have to skip the keyword gridsize, and type instead reference. Example:
\$dft
functional b-p
reference
test-integ
Check if the selected grid is accurate enough for the employed basis-set by performing a numerical integration of the norm of all (occupied and virtual) orbitals. Useful for LHF. 245.
batchsize integer
Grid points are sorted into batches, which are then processed. This increases efficency. This should be changed only by developers. Default is batchsize 100 .

```
fullshell
```

Standard grids have reduced number of spherical grid points near nuclei. With the keyword fullshell this reduction is suppressed. Reference grid (see keyword reference) always has full spherical grids with 1202 points. Should be used to checked the influence of spherical grid reduction.
Example for the usage of fullshell:
\$dft
functional b-p
gridsize m4
fullshell
symblock1 real
symblock2 real -for developers only-
Values of real effects efficiency of the quadrature, default is symblock1 0.001 and symblock2 0.001, one can try higher or smaller values.
xparameter integer -not recommended for use-
Where xparameter (default) can be: sgrenze (8), fgrenze (10), qgrenze (12), dgrenze (12) and, fcut (14). These parameters control neglect of near zeros of various quantities. With xparameter integer one changes the default. integer larger than defaults will increase the numerical accuracy. Tighter threshold are set automatically with keyword \$scfconv (see section 15.2.5 on page 236).
weight derivatives
Includes the derivatives of quadrature weights to get more accurate results. Default is that the derivatives of quadrature weights will be not considered, see section 15.2 .8 on page 254 .

gridordering

Grid points are ordered into batches of neighbouring points. This increases efficiency, since now zeros can be skipped for entire batches. gridordering is default for serial version, not for the parallel one. You cannot use weight derivatives and gridordering together.
Example for switching off gridordering:

```
    $dft
        gridordering 0
```

\$electrostatic field

Specification of external electrostatic field(s). The specification may take place either by Ex, Ey, Ez or by $x, y, z,|E|$. See also \$fldopt.

Example:
\$electrostatic field

$$
\begin{array}{lll}
0.1000 \mathrm{E}-03 & 0.000 & 0.000
\end{array}
$$

\$fermi tmstrt $=<300.0>$ tmend $=<100.0>\operatorname{tmfac}=<0.9>$ hlcrt $=<1.0 \mathrm{E}-01>$ stop=<1.0E-03> nue=<N>

Requests calculation of occupation numbers at a finite temperature T. For an orbital with the energy ε_{i} the occupation number $n_{i} \in[0,1]$ is calculated as

$$
n_{i}=\frac{1}{2} \operatorname{erfc}\left(\frac{\varepsilon_{i}-\mu}{f T}\right)
$$

where μ is the Fermi level. The factor $f=4 k / \sqrt{\pi}$ is chosen to yield the same slope at the Fermi level as the Fermi distribution.
Calculation of the fractional occupation numbers starts when the current HOMO-LUMO gap drops below the value given by hlcrit (default: 0.1). The initial temperature given by tmstrt (default: 300 K) is reduced at each SCF cycle by the factor tmfac (default: 1.0) until it reaches the value tmend (default: 300 K). Note that the default values lead to occupation numbers calculated at a constant $T=300 \mathrm{~K}$. Current occupation numbers are frozen if the energy change drops below the value given by stop (default: $1 \cdot 10^{-3}$). This prevents oscillations at the end of the SCF procedure.
Calculation of fractional occupation numbers often requires much higher damping and orbital shifting. Please adjust the values for \$scfdamp and \$scforbitalshift if you encounter convergence problems.
In UHF runs this option can be used to automatically locate the lowest spin state. In order to obtain integer occupation numbers tmend should be set to relatively low value, e.g. 50 K .

Calculation of fractional occupation numbers should be used only for single point calculations. When used during structure optimizations it may lead to energy oscillations.

The optional nue value (number of unpaired electrons) can be used to force a certain multiplicity in case of an unrestricted calculation. nue $=0$ is for singlet, nue $=1$ for dublet, etc.

\$firstorder

Perform first-order SCF-calculation, i.e. perform only one SCF-iteration with the start MOs (which should be the orthogonalized MOs of two independent subsystems as is explained in detail in Chapter 13).

\$fldopt options

Specification of options related with external electrostatic fields. The following options are available:

1st derivative on/off
Calculate numerical 1st derivative of SCF energy with respect to electrostatic field (default: off), increment for numerical differentiation is edelt (see below).
2nd derivative on/off
Calculate numerical 2nd derivative of SCF energy with respect to electrostatic field (default: off), increment for numerical differentiation is edelt.
edelt= real
Increment for numerical differentiation (default: 0.005).
fields on/off
Calculate SCF energy for non-zero external electrostatic
fields defined in \$electrostatic field.
geofield on/off
Calculate SCF energy for one external field definition and dump disturbed MOs onto \$scfmo. This enables to evaluate properties or perform geometry optimizations in the presence of an external field.

Caution: don't use the RI approximation for all these calculations since this will lead to non-negligible errors!!

\$incore integer

By using this option the two-electron integrals are kept in RAM; integer specifies how many megabytes should be allocated. If the integrals exceed the RAM allocated the program reverts to the standard mode. Supports all methods which process two-electron integrals, i.e. SCF and DFT (including hybrid functionals); RHF and UHF.
The following condition must be met:

```
$scfdenapproxl 1
```

and rhfshells 1 or 2 . It is advisable to set $\$$ thize as small as possible (e.g. \$thize 0.1d-08) and to remove the keyword \$scfdump.

Note: this keyword does not work for parallel runs.
\$mo-diagram only nirreps=integer
If this keyword is set the energies and symmetry labels of all occupied MOs will be dumped to this data group. This may be helpful to draw mo-diagrams. If only has been set only the start MOs are dumped and the program quits. nirreps will hold the total number of displayed orbitals after the successful run.

\$moprint

If this keyword is present all occupied orbitals are dumped to standard output. Be careful about this option as it can create huge output files in case of many basis functions.
\$mo output format format
If this line is present, the dscf program is forced to output the MOs using the new FORTRAN format format regardless of the format-option in data group $\$$ scfmo. Otherwise the input format will be used.

Example: \$mo output format(3(2x,d15.8))
\$natural orbitals
This data group will be written after an UHF calculation (together with \$natural orbital occupation) and contains the natural space orbitals (same syntax as \$scfmo).
\$natural orbital occupation
This data group will be written after an UHF calculation (together with \$natural orbitals) and contains the occupation of natural orbitals (syntax as any data group related with orbital occupation information, e.g. \$closed shells), e.g.
$\left.\begin{array}{llll}\mathrm{a} & 1-5 & (& 2.00000000000000) \\ \mathrm{a} & 6 & (& 1.99949836999366\end{array}\right)$
\$point_charges
Specification of position and magnitude of point charges to be included in the Hamiltonian. Each point charge is defined in the format
<x> <y> <z> <q>
with $\langle x\rangle,\langle y\rangle,\langle z\rangle$ being the coordinates and $\langle q\rangle$ its charge,e.g.
\$point_charges thr=<real> self-energy list
2. 2. 2.5 .
5. 0. 0. 2.5

In addition the following optional arguments may be given:
thrdistance threshold for discarding redundant point charges, default value 10^{-6}.
selfenergyif given, the selfenergy of the point charge array will will be included in the energy and the gradient
listprint all point charges in the output (default is to print the point charges only if less than 100 charges given)

\$prediag

concerns the first SCF iteration cycle if start MOs from an EHT guess are used.

The SCF iteration procedure requires control mechanisms to ensure (fast) convergence, in TURBOMOLE these are based on orbital energies ϵ_{i} of the preceeding iteration used for level shifting and damping (besides DIIS, see below). This feature cannot be used in the first iteration if EHT MOs are employed as start, since ϵ_{i} are not available. The keyword $\$$ prediag provides ' ϵ_{i} of the zeroth iteration' by diagonalization of occ-occ and virt-virt part of the first Fock matrix, to allow for level shifting etc.. See \$scfdiis below.
\$restart dscf twoint
Try a dscf restart. The program will read the data group \$restartd (which must exist, also \$scfmo has to exist!) and continue the calculation at the point where it ended before. If the additional option twoint is appended, the program will read the two-electron integrals from the files specified in $\$$ scfintunit, so there will be almost no loss of cpu-time.
All this information is normally provided by the previous dscf run if the keyword \$scfdump (see there) was given.

\$restartd data

Data provided by a previous dscf run that has been interrupted. This keyword is created when \$scfdump was given.
\$rundimensions data
is set by define so usually no changes are necessary. The dimensions must be greater or equal to those actually required, i.e. you can delete basis functions and keep rundimensions. This keyword is not necessary for small cases.
Example:

```
dim(fock,dens)=6072
natoms=6
nshell=34
nbf (CAO)=108
nbf(AO)=98
dim(trafo[SAO<-->AO/CAO])=256
rhfshells=1
```


\$scfconv integer

SCF convergency criterion will be $10^{- \text {integer }}$ for the energy. Gradients will only be evaluated if integer >6.

```
$scfdamp start=<.500> step=<.050> min=<.100>
```

Damping parameters for SCF iterations in order to reduce oscillations. The old Fock-operator is added to the current one with weight 0.5 as start; if convergence is good, this weight is then reduced by the step 0.05 in each successive iteration until the minimum of 0.1 is reached. (These are the default settings of define for closed-shell RHF). DSCF automatically tries to adjust the weight to optimize convergence but in difficult cases it is recommended to start with a large weight, e.g. 1.5, and to set the minimum to a larger value, e.g. 0.5.

\$scfdebug options

Flags for debugging purposes. Following options are available:

vectors integer

Output level concerning molecular orbitals. integer $=0$ (default) means minimal output, >1 will output all start MOs and all MOs in each iteration.
density integer
Output level concerning difference density matrices.
debug integer
integer > 0 will dump a lot of information-be careful!
\$scfdenapproxl integer
Direct SCF procedures build the Fock matrix by exploiting information from previous iterations for better efficiency. With this keyword information from the last integer iterations will be used. This feature is switched on with the default value 20 , even if the keyword is absent. The user may reduce the number of iterations employed to smaller values (e.g. 10) in cases were numerical stability could become an issue. With the value 0 this feature is switched off; the Fock matrix is constructed from scratch in each iteration.

\$scfdiis options

Control block for convergence acceleration via Pulay's DIIS * ${ }^{*}$
Options are:

[^3]errvec=char specifies the kind of error vector to be used (two different kind of DIIS algorithms)

```
    char='FDS' or 'SDF' or 'FDS-SDF'
```

 uses (FDS - SDF) as error vector.
 char \(=\) none
 no DIIS
 char= sFDs
 use \(S^{-1 / 2} F D S^{1 / 2}\) - transposed
 Further suboptions:
maxiter=integer
maximum number of iterations used for extrapolation.
debug=integer
debug level (default: 0)
integer $=1$ print applied DIIS coefficients
integer=2 print DIIS matrix and eigenvalues, too
qscal $=$ real
scaling factor in DIIS procedure: qscal >1 implies some damping,
qscal $=1.0$: straight DIIS.
thrd=real
directs the reduction of qscal to qscal $=1.0$ (no damping in DIIS), done if $\|$ errvec $\|<$ thrd.

Defaults for \$prediag (see above) and \$scfdiis
errvec=FDS-SDF, maxiter=5, qscal=1.2, thrd=0.0, this implies DIIS damping in all iterations, prediag is switched of.
Recommended:
errvec=sFDs leads to the following defaults:
qscal=1.2, for SCF runs: maxiter=6 and thrd=0.3, prediag is off; for DFT runs: maxiter=5 and thrd=0.1 prediag is on. If you want to switch off prediag put
\$prediag none.

\$scfdump

Dump SCF restart information onto data group \$restartd and dump SCF MOs in each iteration onto \$scfmo (scfdump = iter). Additionally, a data block $\$$ scfiterinfo will be dumped containing accumulated SCF total-, oneand two-electron energies of all previous SCF iterations. Information that will allow you to perform a restart if your calculation aborts will be dumped on data group \$restartd (see also \$restart).

\$scfintunit options

Disc space specification for two-electron integrals. The following suboptions are available (and necessary):
unit=integer
Fortran unit number for this file. Unit numbers $30,31, \ldots$ are recommended.
size=integer
Filespace in megabytes for this file. size=0 leads to a fully direct run. size is set by a statistics run, see \$statistics. DSCF switches to direct mode if the file space is exhausted.
file=char
Filename. This may also be a complete path name, if you want to store the integrals in a special directory. Make sure the file is local, otherwise integrals are transmitted over the network.

Thus your data group \$scfintunit may look like this:

```
$scfintunit
    unit=30 size=35 file=twoint1
    unit=31 size=35 file=/users/work/twoint2
```

Maximal 30 files may be specified in this way.

\$scfiterlimit integer

Maximum number of SCF iterations (default: 30).

\$scfmo none file=char

Input/output data group for SCF MOs. You can specify
none
To perform a calculation without a start vector (i.e. use a core Hamiltonian guess).
file=char
The file where the MOs are written on output (default: mos).
These two options can also be used for \$uhfmo_alpha and \$uhfmo_beta to use a core guess and write the molecular orbitals to file.

After running define or a TURBOMOLE calculation additional options may appear specifying the origin of the MOs:

expanded

These MOs were obtained by projection form another basis set. They should not be used for wavefunction analysis.
scfconv=integer
The MOs are converged SCF MOs, the convergence criterion applied was $10^{- \text {integer }}$
scfdump=integer
The MOs are unconverged SCF MOs which were written on this data group after iteration integer. The latter three options are mutually exclusive.

format (format string)

This specifies the FORTRAN format specification which was used for MO output. The standard format is (4 d 20.14). (See data group \$mo output format.)

Example:
Your data group \$scfmo could look like this after a successful TURBOMOLE run :
\$scfmo scfconv=7 format(3(1x,d19.13))
1 a1 eigenvalue=-. 524127 nsao=6
$.1234567890123 \mathrm{~d}+01-.1234567890123 \mathrm{~d}+00$. $1234567890123 \mathrm{~d}-01$
$.1234567890123 \mathrm{~d}+01-.1234567890123 \mathrm{~d}+00$
3 a2 eigenvalue=-. 234810

\$scforbitalorder on/off

Order SCF MOs with respect to their energies (default: on)
\$scforbitalshift options
To assist convergence, either the energies of unoccupied MOs can be shifted to higher energies or, in open-shell cases, the energies of closed-shell MOs to lower energies. In general a large shift may help to get better convergence.
Options are:
noautomatic
Automatic virtual shell shift switched off.
automatic real
Automatic virtual shell shift switched on; the energies of virtual orbitals will be shifted if the HOMO-LUMO gap drops below real such that a gap of real is sustained. This is the default setting if the keyword is missing with real=0.1.
closedshell=real
Option for open-shell cases. Closed shells are shifted to lower energies by real. The default shift value is closedshell=0.4.
Note: Normally this will disable the automatic shift of energies of virtual orbitals! To override this, you should append an exclamation mark to the 'automatic' switch, i.e. specify 'automatic! real'.
individual
Set shifts for special occupied MOs. To use this option, start the line with the symmetry label and the list of MOs within this symmetry and append the desired shift in brackets as in the following example:

```
a1 1,2,4-6 (-.34)
b1 8 (+.3)
```

\$scftol real
Integral evaluation threshold. Integrals smaller than real will not be evaluated. Note that this threshold may affect accuracy and the convergence properties if it is chosen too large. If \$scftol is absent, a default value will be taken obtained from $\$$ scfconv by real $=\frac{10^{-(s c f c o n v+1)}}{3 \cdot \# b f}(\# \mathrm{bf}=$ number of basisfunctions).

\$scratch files

The scratch files allocated by dscf can be placed anywhere in your file systems instead of the working directory by referencing their pathnames in this data group. All possible scratch files are listed in the following example:

```
    $scratch files
        dscf dens path1/file1
        dscf fock path2/file2
        dscf dfock path3/file3
        dscf ddens path4/file4
        dscf statistics path7/file7
        dscf errvec path8/file8
        dscf oldfock path9/file9
        dscf oneint path10/file10
```

The first column specifies the program type (dscf stands for SCF energy calculations, i.e. the dscf program), the second column the scratch file needed by this program and the third column the pathname of the file to be used as scratch file.

\$statistics options

The following options are allowed
off Do not perform integrals statistics
dscf Perform integrals statistics for dscf
kora see KORA
mpgrad see mpgrad
polly see POLLY
dscf parallel see PARALLEL PROCESSING
Options kora, dscf parallel, grad, mpgrad, polly will be described in the related chapters.
If \$statistics dscf has been given integral prescreening will be performed (which is an n^{4}-step and may therefore be time-consuming) and a table of the number of stored integrals as a function of the two parameters \$thize and \$thime will be dumped. Afterwards, the filespace needed for the current combination of \$thize and \$thime will be written to the data group (\$scfintunit) and \$statistics dscf will be replaced by \$statistics off.
\$thime integer
Integral storage parameter, which is related to the time needed to calculate the integral. The larger integer the less integrals will be stored. The default value is integer $=5$. (see also \$thize, \$statistics)
\$thize real
Integral storage parameter, that determines, together with \$thime, the number of integrals stored on disc. Only integrals larger than real will be stored. The default value is real $=0.100 \mathrm{E}-04$.

RHF/ROHF

\$closed shells
Specification of MO occupation for RHF, e.g.

| a1g | $1-4$ |
| :--- | :--- | :--- |
| a2g | 1 |\(\quad\left(\begin{array}{l}2

)\end{array}\right.\)
\$open shells type=1
MO occupation of open shells and number of open shells. 'type $=1$ ' here means that there is only a single open shell consisting e.g. of two MOs:
b2g 1 (1)
b3g 1 (1)
\$rohf
This data group is necessary for ROHF calculations with more than one open shell. Example:
\$rohf 1
$a-a \quad a=0 \quad b=0$
$h-h \quad a=1 \quad b=2$
$a-h \quad a=1 \quad b=2$
This example is for the 7 S state of chromium $\left(3 d^{5} 4 s^{1}\right)$ in symmetry group I. Note that for this option being activated, \$roothaan also has to be specified in your control file, although its parameter has no meaning in this case. For more details see Section 6.3.
\$roothaan
For ROHF-calculations with only one open shell the Roothaan parameters ${ }^{\dagger}$ a and b have to be specified within this data group (see also \$rohf). Example:
\$roothaan

$$
a=3 / 4 \quad b=3 / 2
$$

[^4]This example is for the 3 P ground state of carbon $\left(2 p^{2}\right)$ in symmetry group I. define recognizes most cases and suggests good Roothaan parameters.

For further information on ROHF calculations (e.g. with more than one open shell), see the sample input in Section 16.6 and the tables of Roothaan parameters in Section 6.3,

Note that this keyword toggles the ROHF mode also for more than one open shell. If it is not given, the open-shell electrons are simply ignored.

UHF

\$alpha shells and \$beta shells
these two data groups specify the occupation of alpha and beta spin UHF MOs (syntax as any data group related with orbital occupation information, e.g. \$closed shells)

Example:
\$alpha shells

| a | $1-8$ | $\left(\begin{array}{l}1 \\ b\end{array}\right.$ |
| :--- | :---: | :--- |
| bbeta | shells | |
| a | $1-7$ | (1) |
| b | $1-3$ | $\left(\begin{array}{ll}\text { b }\end{array}\right.$ |

\$uhf

directs the program to carry out a UHF run. \$uhf overwrites closed-shell occupation specification.

\$uhfmo_alpha and \$uhfmo_beta

These two data groups contain the UHF MO vectors for alpha and beta spin respectively (same syntax as \$scfmo).

\$uhfmo_beta

see \$uhfmo_alpha

DFT

\$dft

```
    functional b-p
```

 gridsize m3
 for DFT calculations one has to specify the functional and the grid (for the quadrature of the exchange correlation part). The settings above are default: both lines can be left out if the B-P86 functional and grid m3 are required. Other useful functionals supported are:

```
b-lyp
b3-lyp
b3-lyp_Gaussian (equivalent to the Gaussian98 keyword B3LYP with VWNIII)
bh-lyp
s-vwn
s-vwn_Gaussian (equivalent to the Gaussian98 keyword SVWN with VWNIII)
tpss
tpssh
```

Possible grids are $1-5$ and $\mathrm{m} 3-\mathrm{m} 5$ where grid 1 is coarse (least accurate) and 5 most dense. We recommend however the use of so-called multiple grids m3-m5: SCF iterations with grid $1-3$, final energy and gradient with grid $3-5$. Usually m3 is fine: for large or delicate systems, try m 4 . For a reference calculation with a very fine grid and very tight thresholds use 'reference' as grid specification instead of 'gridsize $x y$ '.
Note: the functionals b3-lyp_Gaussian and s-vwn_Gaussian are made available only for comparability with Gaussian. The functional VWNIII is much less well founded than VWN5 and the TURBOMOLE team does not recommend the use of VWNIII.

RI

Dscf does not run with the keyword \$rij: you must call the RI modules Ridft and Rdgrad for energy and gradient calculations. However, it does run with the keyword \$rik, but it will ignore all RI settings and do a conventional non-RI Hartree-Fock or DFT calculation.
\$rij
Enforces an RI- J calculation if module ridft is used, can be used for HartreeFock as well as for DFT calculations with pure or hybrid functionals.
\$ridft
Obsolete keyword - use \$rij instead!
\$rik
Enforces a RI-JK calculation if module ridft is used, can be used for HartreeFock as well as for DFT calculations with pure or hybrid functionals.

\$ricore integer

Choose the memory core available (in megabyte) for special arrays in the RI calculation (the less memory you give the more integrals are treated directly, i.e. recomputed on the fly in every iteration)
\$jbas file=auxbasis
Cross reference for the file specifying the auxiliary basis as referenced in
\$atoms. We strongly recommend using auxbasis sets optimized for the respective MO basis sets, e.g. use SVP (or TZVP) for the basis and the corresponding auxbasis as provided by define (default: file=auxbasis).

\$ripop

Calculation of atomic charges according to the s partial wave and atomic dipole moments according to the p partial wave as resulting from the auxbasis representation of the density

RI-JK

If the keyword \$rik is found in the control file, ridft performs a Hartree-FockSCF calculation using the RI-approximation for both Coulomb and HF-exchange (efficient for large basis sets). For this purpose needed (apart from \$ricore):

\$jkbas file=auxbasis

Cross reference for the file specifying the JK-auxiliary basis as referenced in \$atoms. This group is created by the rijk menu in define.

MARI-J

Multipole-Accelerated-Resolution-of-Identity- J. This method partitions the Coulomb interactions in the near- and far-field parts. The calculation of the far-field part is performed by application of the multipole expansions and the near-field part is evaluated employing the RI- J approximation. It speeds up calculation of the Coulomb term for large systems. It can only be used with the ridft module and requires setting of the \$ridft keyword.

```
$marij
    precision 1.0D-06
    lmaxmom 10
    nbinmax 8
    wsindex 0.0
    extmax 20.0
    thrmom 1.0D-18
```

The following options are available:
precision specifies precision parameter for the multipole expansions. Lowprecision MARI- J calculations require $1 \cdot 10^{-6}$, which is the default. For higher precision calculations it should be set to $1 \cdot 10^{-8}$ $1 \cdot 10^{-9}$.
lmaxmom maximum l-moment of multipole expansions. It should be set to a value equal at least twice the maximum angular momentum of basis functions. Default value is 10 and it should probably never be set higher than 18 .
thrmom Threshold for moment summation. For highly accurate calculations it should be set to $1 \cdot 10^{-24}$.
nbinmax number of bins per atom for partitioning of electron densities. Default value is 8 and hardly ever needs to be changed.
wsindex minimum separation between bins. Only bins separated more than the sum of their extents plus wsindex are considered as farfield. Default is 0.0 and should be changed only by the experts.
extmax maximum extent for charge distributions of partitioned densities. Extents with values larger then this are set to extmax. Hardly ever needs to be changed.

LHF

Use the Localized Hartree-Fock (LHF) method to obtain an effective Exact-Exchange Kohn-Sham potential (module dscf). The LHF method is a serial implementation for spin-restricted closed-shell and spin-unrestricted ground states.

```
$dft
    functional lhf
    gridsize 6
```

With the LHF potential Rydberg series of virtual orbitals can be obtained. To that end, diffuse orbital basis sets have to be used and special grids are required.
gridtype 4 is the most diffuse with special radial scaling; gridtype 5 is for very good Rydberg orbitals; gridtype 6 (default in Lhfprep) is the least diffuse, only for the first Rydberg orbitals.
Only gridsize 3-5 can be used, no multiple grids.
Use test-integ to check if the selected grid is accurate enough for the employed basis-set.

How to do LHF runs

1) Do a Hartree-Fock calculation using dscf.
2) Use the script lhfprep to prepare the control file (the old control file will be saved in control.hf and the molecular orbitals in mos.hf or in alpha.hf and beta.hf for the spin-unrestricted case). See lhfprep -help for options.
3) Run again dscf.

Otherwise the LHF functional can be selected in define: in this case default options are used.

Options for the LHF potential can be specified as follows (see also lhfprep -help)

```
$1hf
off-diag on
numerical-slater off
pot-file save
asymptotic dynamic=1.d-3
homo 1b1u
homob 1b1u # ONLY UNRESTRICTED
conj-grad conv=1.d-7 maxit=20 output=1 cgasy=1
slater-dtresh 1.d-9
slater-region 7.0 0.5 10.0 0.5
corrct-region 10.0 0.5
slater-b-region 7.0 0.5 10.0 0.5 # ONLY UNRESTRICTED
corrct-b-region 10.0 0.5 # ONLY UNRESTRICTED
correlation func=lyp
```

 off-diag off
 calculation of the KLI exchange potential. By default the LHF exchange
 potential is computed (off-diag on).
 numerical-slater on
 the Slater potential is calculated numerically everywhere: this is more
 accurate but much more expensive. When ECP are used, turn on this
 option.
 numerical-slater off
 leads to accurate results only for first-row elements or if an uncontracted
 basis set or a basis set with special additional contractions is used: in
 other cases numerical-slater on has to be used (this is default).
 asymptotic
 for asymptotic treatment there are three options:
 asymptotic off
 No asymptotic-treatment and no use of the numerical Slater. The total exchange potential is just replaced by $-1 / r$ in the asymptotic region. This method is the fastest one but can be used only for the density-matrix convergence or if Rydberg virtual orbitals are of no interest.
asymptotic on
Full asymptotic-treatment and use of the numerical Slater in the near asymptotic-region.
asymptotic dynamic=1.d-3
Automatic switching on (off) to the special asymptotic treatment if the differential density-matrix rms is below (above) 1.d-3. This is the default.
pot-file save
the converged Slater and correction potentials for all grid points are saved in the files slater.pot and corrct.pot, respectively. Using pot-file load, the Slater potential is not calculated but read from slater.pot (the correction potential is instead recalculated). For spin unrestricted calculations the corresponding files are slaterA.pot, slaterB.pot, corrctA.pot and correctB.pot.
homo
allows the user to specify which occupied orbital will not be included in the calculation of correction potential: by default the highest occupied orbital is selected. This option is useful for those systems where the HOMO of the starting orbitals (e.g. EHT, HF) is different from the final LHF HOMO. homob is for the beta spin.
correlation func=functional
a correlation functional can be added to the LHF potential: use func=lyp for LYP, or func=vwn for VWN5 correlation.

For expert users

Options for the conjugate-gradient algorithm for the computation of the correction potential: rms-convergence (conj-grad conv=1.d-7), maximum number of iteration (maxit=20), output level output=0-3, asymptotic continuation in each iteration (cgasy=1).
With slater-dtresh= 1.d-9 (default) the calculations of the numerical integrals for the Slater potential is performed only if it changes more than 1.d-9.
Asymptotic regions specification:

$$
\begin{aligned}
& \text { corrct-region } R_{F} \Delta_{F} \\
& 0 \ldots R_{F}-\Delta_{F}: \text { basis-set correction potential } \\
& R_{F}-\Delta_{F} \ldots R_{F}+\Delta_{F}: \text { smooth region } \\
& R_{F}+\Delta_{F} \ldots+\infty: \text { asymptotic correction } \\
& \text { Defaults: } R_{F}=10, \Delta_{F}=0.5 \\
& \text { slater-region } R_{N} \Delta_{N} R_{F}^{\prime} \Delta_{F}^{\prime} \\
& 0 \ldots R_{N}-\Delta_{N}: \text { basis-set Slater potential } \\
& R_{N}-\Delta_{N} \ldots R_{N}+\Delta_{N}: \text { smoothing region } \\
& R_{N}+\Delta_{N} \ldots R_{F}^{\prime}-\Delta_{F}^{\prime}: \text { numerical Slater } \\
& R_{F}^{\prime}-\Delta_{F}^{\prime} \ldots R_{F}^{\prime}+\Delta_{F}^{\prime}: \text { smoothing region } \\
& R_{F}^{\prime}+\Delta_{F}^{\prime} \cdots+\infty: \text { asymptotic Slater } \\
& \text { Note: } R_{F}^{\prime}-\Delta_{F}^{\prime} \leq R_{F}-\Delta_{F} \\
& \text { Defaults: } R_{N}=7, \Delta_{N}=0.5, R_{F}^{\prime}=10, \Delta_{F}^{\prime}=0.5 \\
& \text { Use correct-b-region and slater-b-region for the beta spin. }
\end{aligned}
$$

Two-component SCF (GHF)

Self-consistent two-component calculations (e.g. for spin-orbit interactions) can be carried out using the module ridft . The following keywords are valid:

\$soghf

enforces two-component-SCF calculations; this option is combinable with \$rij, \$rik and \$dft.

\$kramers

switches on Kramers-restricted formalism

```
$gdiis
```

enforces DIIS for complex Fock operator.

Scalar-relativistic Douglas-Kroll-Hess (DKH) Hamiltonian

Scalar-relativistic all-electron calculations can be done employing the Douglas-KrollHess (DKH) Hamiltonian. Implemented for modules dscf and ridft.

\$dkhorder integer

switches on DKH calculation of order integer.

\$dkhparam integer

selects parameterization of the DKH Hamiltonian. Valid values are 1 (=default), $2,3,4$, and 5 .

15.2.6 Keywords for Periodic Electrostatic Embedded Cluster Method

The Periodic Electrostatic Embedded Cluster Method (PEECM) functionality provides electronic embedding of a finite, quantum mechanical cluster in a periodic, infinite array of point charges. It is implemented within HF and DFT energy and gradient TURBOMOLE modules: dscf, grad, ridft, rdgrad, and escf. Unlike embedding within a finite set of point charges the PEEC method always yields the correct electrostatic (Madelung) potential independent of the electrostatic moments of the point charges field. It is also significantly faster than the traditional finite point charges embedding.

The basic PEECM settings are defined in the \$embed block. It can be redirected to an external file using \$embed file=<file_name>.

Following keywords are used for the PEECM calculation setup:

```
periodic
```

Specifies the number of periodic directions. Allowed values for number are 3 for a bulk three-dimensional system, 2 for a two-dimensional surface slab, and 1 for a one-dimensional system. Default value is 3 .
cell
Unit cell parameters in a form of six real values $|\mathbf{a}|,|\mathbf{b}|,|\mathbf{c}|, \alpha, \beta, \gamma$, where $|\mathbf{a}|,|\mathbf{b}|$, $|\mathbf{c}|$ are lengths of the appropriate cell vectors, α is the angle between vectors \mathbf{b} and \mathbf{c}, β is the angle between vectors a and \mathbf{c}, and γ is the angle between vectors a and b. Default are atomic units and degrees. You can specify unit cell parameters in \AA and degrees using cell ang.

```
content
    label x y z
end
```

Content of the unit cell, where label is the label of the point charge Content of the unit cell, where label is the label of the point charge type and x y z are corresponding Cartesian or fractional crystal coordinates. Defaults are Cartesian coordinates and atomic units. You can specify Cartesian coordinates in \AA using content ang and fractional coordinates using content frac. Note that Cartesian coordinates assume that the cell vector a is aligned along the x axis, and the vector b on the $x y$ plane.

```
cluster
    label x y z
end
```

Atomic coordinates of the piece of the crystal to be replaced by the QM cluster and surrounding isolation shell (ECPs and explicit point charges), where label is the point charge label and x y z are corresponding Cartesian or fractional crystal coordinates. Defaults are Cartesian coordinates and atomic units. You can specify Cartesian coordinates in \AA using cluster ang and fractional coordinates using cluster frac.

```
charges
    label charge
end
```

Values of point charges (for each atom-type), where label is the point charge label and charge specifies charge in atomic units.

```
ch_list
    label charge
end
```

Values of point charges (for each atom), where label is the point charge label and charge specifies charge in atomic units.

Note that charges and ch_list are mutually exclusive. An integer number n can also be appended to charges or ch_list to set the tolerance for charge neutrality violation to 10^{-n} (default $n=5$).

Additionally, the following keywords control the accuracy of PEECM calculation:

lmaxmom

Maximum order of the multipole expansions in periodic fast multipole method (PFMM). Default value is 25 .

```
potval
```

Electrostatic potential at the lattice points resulting from periodic point charges field will be output if this keyword is present. Default is not to output.

```
wsicl
```

Well-separateness criterion for PFMM. Default is 3.0.

```
epsilon
```

Minimum accuracy for lattice sums in PFMM. Default is 1.0d-8.

15.2.7 Keywords for Cosmo

The Conductor-like Screening Model (cosmo) is a continuum solvation model, where the solute molecule forms a cavity within the dielectric continuum of permittivity epsilon that represents the solvent. A brief description of the method is given in chapter 14. The model is currently implemented for SCF energy and gradient calculations (dscf/ridft and grad/rdgrad), MP2 energy calculations (Rimp2 and mpgrad) and MP2 gradients (Rimp2).

For simple HF or DFT single point calculations or optimizations with standard settings, we recommend to add the \$cosmo keyword to the control file and to skip the rest of this section.

Please note: due to improvements in the \mathbf{A} matrix and cavity setup the cosmo energies and gradients may differ from older versions (5.7 and older). The use_old_amat option can be used to calculate energies (not gradients) using the old cavity algorithm of Turbomole 5.7.
The basic cosmo settings are defined in the \$cosmo and the \$cosmo_atoms block. Example with default values:

```
$cosmo
    epsilon=infinity
    nppa= 1082
    nspa= 92
    disex= 10.0000
```

```
    rsolv= 1.30
    routf= 0.85
    cavity closed
    ampran= 0.1D-04
    phsran= 0.0
    refind= 1.3
# the following options are not used by default
    allocate_nps= 140
    use_old_amat
    no_oc
```

epsilon=real
defines a finite permittivity used for scaling the screening charges.
allocate_nps=integer
skips the cosmo segment statistics run and allocates memory for the given
number of segments.
no_oc
skips the outlying charge correction.

All other parameters affect the generation of the surface and the construction of the A matrix:
nppa= integer
number of basis grid points per atom
(allowed values: $k=10 \times 3^{i} \times n^{2}+2=12,32,42,92 \ldots$)
nspa= integer
number of segments per atom
(allowed values: $k=10 \times 3^{i} \times n^{2}+2=12,32,42,92 \ldots$)
disex= real
distance threshold for A matrix elements (Ångstrom)
rsolv= real
distance to outer solvent sphere for cavity construction (Ångstrom)
routf= real
factor for outer cavity construction in the outlying charge correction
cavity closed
fill in seams between atoms with points
cavity open
leave untidy seams between atoms

```
ampran= real
    amplitude of the cavity de-symmetrization
phsran= real
    phase of the cavity de-symmetrization
refind= real
    refractive index used for the calculation of vertical excitations and num.
    frequencies (the default }1.3\mathrm{ will be used if not set explicitly)
use_old_amat
            uses A matrix setup of TURBOMOLE 5.7
If the \$cosmo keyword is given without further specifications the default parameter are used (recommended). For the generation of the cavity, cosmo also requires the definition of atomic radii. User defined values can be provided in Angstrom units in the data group \$cosmo_atoms, e.g. for a water molecule:
```

```
$cosmo_atoms
```

\$cosmo_atoms

radii in Angstrom units

radii in Angstrom units

o 1
o 1
radius= 1.7200
radius= 1.7200
h 2-3
h 2-3
radius= 1.3000

```
    radius= 1.3000
```

If this section is missing in the control file, the default values defined in the radii. cosmo file (located in \$TURBODIR/parameter) are used. A user defined value supersedes this defaults. \$cosmo and \$cosmo_atoms can be set interactively with the cosmo input program Cosmoprep after the usual generation of the TURBOMOLE input.

The cosmo energies and total charges are listed in the result section. E.g.:

```
SCREENING CHARGE:
    cosmo : -0.003925
    correction : 0.003644
    total : -0.000282
ENERGIES [a.u.]:
Total energy = -76.0296831863
Total energy + OC corr. = -76.0297567835
Dielectric energy = -0.0118029468
Diel. energy + OC corr. = -0.0118765440
The following value is included for downward compatibility
Total energy corrected = -76.0297199849
```

The dielectric energy of the system is already included in the total energy. OC corr denotes the outlying charge correction. The last energy entry gives the total outlying charge corrected energy in the old definition used in TURBOMOLE 5.7 and older versions.

Isodensity Cavity: This option can be used in HF/DFT single point calculations only. The \$cosmo_isodens section defines the settings for the density based cavity setup (see also chapter 14). If the \$cosmo_isodens keyword is given without suboptions, a scaled iosodensity cavity with default settings will be created. Possible options are:
\$cosmo_isodens
activates the density based cavity setup. The default values of nspa and nsph are changed to 162 and 92 , respectively. This values are superseded by the user defined nspa value of the \$cosmo section. By default the scaled density method is used. The atom type dependent density values are read from the radii.cosmo file (located in \$TURBODIR/parameter).
$\mathrm{dx}=$ real
spacing of the marching tetrahedron grid in \AA (default: $0.3 \AA$).
all_dens=real
use one isodensity value for all atom types (value in a.u.)
The outlying charge correction will be performed with a radii based outer cavity. Therfore, and for the smoothing of the density changes in the intersection areas of the scaled density method, radii are needed as for the standard Cosmo cavity. Please note: The isodensity cavity will be constructed only once at the beginning of the SCF calculation. The density constructed from the initial mos will be used (file mos or alpha/beta in case of unrestricted calculations). Because the mos of an initial guess do not provide a good density for the cavity construction, it is necessary to provide mos of a converged SCF calculation (e.g. a Cosmo calculation with standard cavity). We recommend the following three steps: perform a standard Cosmo calculation, add the isodensity options afterwards, and start the calculation a second time.

Cosmo in MP2 Calculations: The iterative cosmo PTED scheme (see chapter 14) can be used with the mp2cosmo script. Options are explained in the help message (mp2cosmo -h). Both MP2 modules RIMP2 and mpgrad can be utilized. The control file can be prepared by a normal cosmo SCF input followed by a RIMP2 or mpgrad input. The PTE gradients can be switched on by using the
\$cosmo_correlated
keyword (Rimp2 only). Again a normal SCF cosmo input followed by a Rimp2 input has to be generated. The \$cosmo_correlated keyword forces dscf to keep
the cosmo information needed for the following MP2 calculation and toggles on the cosmo gradient contribution.

Cosmo in Numerical Frequency Calculations: NumForce can handle two types of cosmo frequency calculations. The first used the normal relaxed cosmo energy and gradient. It can be performed with a standard dscf or ridft Cosmo input without further settings. This is the right method to calculate a Hessian for optimizations. The second type, which uses the approach described in chapter 14 , is implemented for ridft only. The input is the same as in the first case but Numforce has to be called with the -cosmo option. If no solvent refractive index refind=REAL is given in the \$cosmo section of the control file the program uses the default (1.3).

Cosmo in vertical excitations and polarizabilities: Cosmo is implemented in escf and will be switched on automatically by the Cosmo keywords of the underlying SCF calculation. The refractive index, used for the fast term screening of the vertical excitations, needs to be defined in the control file (refind=REAL).

15.2.8 Keywords for Modules Grad and Rdgrad

Many of the dscf and ridft keywords are also used by grad and rdgrad.

\$drvopt

This keyword and corresponding options are required in gradient calculations only in special circumstances. Just \$drvopt is fine, no options needed to compute derivatives of the energy with respect to nuclear coordinates within the method specified: SCF, DFT, RIDFT.

If running a DFT gradient calculation, it is possible to include the derivatives of the quadrature weights, to get more accurate results. In normal cases however those effects are marginal. An exception is numerical calculation of frequencies by Numforce, where it is strongly recommended to use the weight derivatives option. The biggest deviations from the uncorrected results are to be expected if doing gradient calculations for elements heavier than Kr using all electron basis sets and very small grids. To use the weight derivatives option, add
weight derivatives
in \$dft.
The option
point charges
in \$drvopt switches on the evaluation of derivatives with respect to coordinates of point charges. The gradients are written to the file \$point_charge_gradients old gradients will be overwritten.

15.2.9 Keywords for Module Aoforce

This module calculates analytically harmonic vibrational frequencies within the HFor (RI)DFT-methods for closed-shell and spin-unrestricted open-shell-systems. Broken occupation numbers would lead to results without any physical meaning. Note, that RI is only used partially, which means that the resulting Hessian is only a (very good) approximation to exact second derivatives of the RIDFT-energy expression. Apart from a standard force constant calculation which predicts all (allowed and forbidden) vibrational transitions, it is also possible to specify certain irreps for which the calculation has to be done exclusively or to select only a small number of lowest eigenvalues (and eigenvectors) that are generated at reduced computational cost.

General keywords

\$drvopt

is the keyword for non-default options of gradient and second derivative calculations. Possibilities in case of the module aoforce are:
frequency analysis only
analysis only
to read a complete Hessian from the input file \$hessian and perform only the frequency analysis
analysis [only] intcoord [print printlevel]
to perform an analysis of normal modes in terms of internal coordinates. Details about this option and the effect of the printlevel (default is 0) are given in Section 11. The effect of the keyword only is the same as described above.

\$maxcor 50

fixes the RAM memory to be used by the run (here 50 MB), about 70% of available memory should be fine, because \$maxcor specifies only the memory used to store derivatives of density and Fock matrices as well as the CPHFRHS. Default is 200 MB .
\$forceconv 7
sets the convergence criterion for the CPHF-equations to a residual norm of $1.0 \mathrm{~d}-7$. Normally the default value of $1.0 \mathrm{~d}-5$ already provides an accuracy of vibrational frequencies of $0.01 \mathrm{~cm}^{-1}$ with respect to the values obtained for the convergence limit.
\$forceiterlimit 10
fixes the maximum number of Davidson iterations for the solution of the CPHF-equations to a value of ten. Normal calculations should not need more than eight iterations, but as a precaution the default value is 25 .
\$nosalc
forces the program in case of molecules with C_{1} symmetry not to use $3 N-6(5)$
symmetry adapted but all $3 N$ cartesian nuclear displacement vectors. This option may lead to a moderate speed-up for molecules notedly larger than 1000 basis functions and 100 atoms.

\$noproj

forces the program not to project out translations and rotations when forming a basis of symmetry adapted molecular displacements. This option may be needed if a Hessian is required, that contains translation- and rotationcontributions, e.g. for coupling the system with low cost methods. Output of the unprojected hessian is done on \$nprhessian; format is the same as for conventional \$hessian. Output of the corresponding eigenvalues and eigenvectors is done analogously on \$nprvibrational spectrum and \$nprvibrational normal modes.

\$nomw

causes the program to diagonalize a not mass weighted hessian. Output is on \$nprhessian, \$nprvibrational spectrum and \$nprvibrational normal modes, because projection of rotations is not possible in this case.
\$isosub
This keyword allows to trace back the effects of isotopic substitution on vibrational frequencies. The atom(s) for which isotopic substitution is to be investigated are specified in subsequent lines of the form (atom index) (mass in special isotope), e.g.
\$isosub
32.001

513
The interpolation then takes place between the mass(es) specified in \$atoms (or the default mass(es), if none specified) and the mass(es) in \$isosub. Take care of symmetry equivalent atoms, otherwise symmetry analysis will fail. This feature can not be used in a lowest eigenvalue search (keyword \$les).

\$isopts 6

Sets the number of points for interpolation between the two isotopes compared by the $\$$ isosub option to six. Default value is 21 .

Keywords for the treatment of only selected nuclear displacement vectors:

```
$ironly
```

CPHF-iteration is done only for distortions, that are IR active.

\$ramanonly

CPHF-iteration is done only for distortions, that are Raman active.
\$les
This causes a lowest Hessian eigenvalue search to be performed instead of a
complete force constant calculation. The lowest eigenvalue search consists of the calculation of a guess-Hessian and macro-iterations to find the solution vector(s) for the lowest eigenvalue(s). In each macro-iteration the CPHFequations are solved for the present search vector(s). \$les all 1 means that one lowest eigenvalue for each irrep will be determined, other numbers of lowest eigenvalues per irrep are admissible too.
Different numbers of lowest eigenvalues for different irreps are requested by e.g.
\$les
a1 3
a2 all
b2 1
The convergence criterion of the Davidson iterations for the solution of the CPHF-equations as well as the maximal residual norm for the lowest Hessian eigenvalue in the macro-iteration are specified by $\$$ forceconv as explained above.

The maximum number of macro-iterations is specified by \$lesiterlimit x
with the default $\mathrm{x}=25$. The maximum number of iterations for each solution of the CPHF-equations is again determined by $\$$ forceiterlimit as shown above.

The convergence of the macro-iterations is strongly influenced by the size of the starting search-subspace. Generally all guess-Hessian eigenvectors corresponding to imaginary frequencies and at least two real ones are used as starting search-subspace. However it proved to be necessary to use even more vectors in the case of guess-Hessians with very large conditioning numbers.
\$hesscond 8.0d-5
means that all eigenvalues with the quotient (eigenvalue)/(max. eigenvalue) lower than 0.00008 are added to the starting search-subspace. Default is $1.0 \mathrm{~d}-4$.

Force constant calculations on the DFT level prove to be numerically reliable only with large integration grids or if one includes the effects of quadrature weights. This is done by default - to prevent this, insert
no weight derivatives
in \$dft.

15.2.10 Keywords for Module Escf

ESCF calculations

to perform an escf calculation converged molecular orbitals from a HF, DFT or RIDFT calculation are needed. The HF, DFT or RIDFT method is chosen according to the \$dft or \$ridft keywords, specified above. It is recommended to use wellconverged orbitals, specifying \$scfconv 7 and \$denconv 1d-7 for the ground-state
calculation. The input for an escf calculation can be conveniently generated using the ex menu in define, see Section 4 .
In an escf run one of the following properties can be calculated: (please note the 'or' in the text, do only one thing at a time.)

1. RPA and time-dependent DFT singlet or triplet or spin-unrestricted excitation energies ($\mathrm{HF}+\mathrm{RI}(\mathrm{DFT})$)

| \$scfinstab rpas | or |
| :--- | :--- |
| \$scfinstab rpat | or |
| \$scfinstab urpa | |

2. CI singles singlet or triplet or spin-unrestricted excitation energies (HF)

| \$scfinstab ciss | or |
| :--- | :--- |
| \$scfinstab cist | or |
| \$scfinstab ucis | |

3. Eigenvalues of singlet or triplet or non-real stability matrices (HF+RI(DFT), RHF)
```
$scfinstab singlet or
$scfinstab triplet or
$scfinstab non-real
```

4. Static polarizability and rotatory dispersion tensors (HF+(RI)DFT, RHF+UHF)
\$scfinstab polly
5. Dynamic polarizability and rotatory dispersion tensors (HF + (RI)DFT, RHF + UHF)
\$scfinstab dynpol unit
list of frequencies
where unit can be eV, nm, rcm; default is a.u. (Hartree). For example, to calculate dynamic polarizabilities at 590 nm and 400 i nm (i is the imaginary unit):
```
$scfinstab dynpol nm
```

 590
 400 i
 The number and symmetry labels of the excited states to be calculated is controlled by the data group \$soes. Example:

```
$soes
b1g 17
eu 23
t2g all
```

will yield the 17 lowest excitations in IRREP b1g, the 23 lowest excitations in IRREP eu, and all excitations in IRREP t2g. Specify \$soes all n; to calculate the n first excitations in all IRREPS. If n is not specified, all excitations in all IRREPS will be obtained.
During an escf run, a system-independent formatted logfile will be constructed for each IRREP. It can be re-used in subsequent calculations (restart or extension of eigenspace or of \$rpaconv). An escf run can be interrupted by typing "touch stop" in the working directory.

general keywords

\$rpacor n

The maximum amount of core memory to be allocated for the storage of trial vectors is restricted to $n \mathrm{MB}$. If the memory needed exceeds the threshold given by \$rpacor, a multiple pass algorithm will be used. However, especially for large cases, this will increase computation time significantly. The default is 200 MB .

\$spectrum unit

The calculated excitation energies and corresponding oscillator strengths are appended to a file named 'spectrum'. Possible values of unit are eV, nm and cm^{-1} or rcm . If no unit is specified, excitation energies are given in a.u.
\$cdspectrum unit
The calculated excitation energies and corresponding rotatory strengths are appended to a file named 'cdspectrum'. unit can have the same values as in \$spectrum.

\$start vector generation e

Flag for generation of UHF start MOs in a triplet instability calculation. The option will become effective only if there are triplet instabilities in the totally symmetric IRREP. The optional real number e specifies the approximate second order energy change in a.u. (default: 0.1).
\$velocity gauge
Enables calculation of dipole polarizability/rotatory dispersion in the velocity gauge. Active only for pure DFT (no HF exchange).

```
$sum rules unit
list of frequencies
    Enable calculation of oscillator and rotatory strength sum rules at frequencies
    specified by list of frequencies in unit unit (see $scfinstab dynpol). Note
    that the sums will be taken only over the states specified in $soes.
$rpaconv n
    the vectors are considered as converged if the Euclidean residual norm is less
    than }1\mp@subsup{0}{}{-n}\mathrm{ . Larger values of }n\mathrm{ lead to higher accuracy. The default is a residual
    norm less than 10-5
$escfiterlimit n
Sets the upper limit for the number of Davidson Iterations to \(n\). Default is \(n=25\).
```


15.2.11 Keywords for Module Egrad

egrad uses the same general keywords as escf and grad, see Sections 15.2 .8 and 15.2.10

The state to be optimized is by default the highest excited state specified in \$soes. Note that only one IRREP can be treated at the same time in contrast to escf calculations. When the desired excited state is nearly degenerate with another state of the same symmetry it may be necessary to include higher states in the initial calculation of the excitation energy and vector in order to avoid root flipping. This is accomplished by means of the additional keyword

\$exopt n

which explicitly enforces that n-th excited state is optimized. n must not be larger than the number of states specified in \$soes.

15.2.12 Keywords for Modules Mpgrad and Rimp2

If an MP2 run is to be performed after the SCF run, the SCF run has to be done with at least

```
1) density convergence $denconv 1.d-7
2) energy convergence $scfconv 6
```


Keywords Valid for Both Mpgrad and Rimp2

\$maxcor n
The data group \$maxcor adjusts the maximum size of core memory (n in MB) which will be allocated during the MP2 run. Recommendation: $3 / 4$ of the actual main memory at most. If \$maxcor is not found, its value is set to 200 MB .

\$mp2energy

Calculation of MP2 gradient is omitted, only MP2 energy is calculated. In connection with this keyword you may also activate the spin-component-scaled (SCS) MP2 proposed by Grimme

```
$mp2energy SCS
```

with the default values of $6 / 5$ for pS and $1 / 3$ for pT , which may be modified this way:

```
$mp2energy SCS pt=val1 ps=val2
```

\$freeze
a1g 1-2
t1u 1

The data group \$freeze specifies frozen orbitals, in the above syntax by irreducible representations. The symmetry-independent and for standardapplications recommended syntax is

```
$freeze
    implicit core=5 virt=2
```

This will freeze the 5 lowest occupied and 2 highest virtual orbitals (alpha and beta count as one in UHF cases). Note that degenerate orbitals count twice (e representations), thrice (t representations) etc. In case of mpgrad frozen orbitals have to be specified manually, for rimp2 the preparation tool rimp2prep may be used to specify frozen core orbitals, frozen virtuals have to be specified manually. Note: In case of gradient calculations frozen core orbitals are regarded only by rimp2, but not by mpgrad, moreover freezing of virtual orbitals is generally not supported by mpgrad.

Mpgrad: Essential Keywords

All essential data groups for mpgrad may be generated by the preparation tool mp2prep, apart from \$maxcor (see above) these are the following:

\$traloop n

specifies the number of loops (or 'passes') over occupied orbitals, n, performed in the mpgrad run: the more passes the smaller file space requirements - but CPU time will go up.

\$mointunit

| type=1111 | unit=62 | size=0 | file=moint\#0 |
| :--- | :--- | :--- | :--- |
| type=1112 | unit=63 | size=0 | file=moint\#1 |
| type=1122 | unit=64 | size=0 | file=moint\#j |
| type=1212 | unit=65 | size=0 | file=moint\#k |
| type=1212a | unit=70 | size=0 | file=moint\#a |
| type=gamma\#1 | unit=71 | size=0 | file=gamma\#1 |
| type=gamma\#2 | unit=72 | size=0 | file=gamma\#2 |
| type=1212u | unit=73 | size=0 | file=moint\#u |
| type=1112u | unit=74 | size=0 | file=moint\#v |
| type=gamma\#1u | unit=75 | size=0 | file=gamma\#1u |

The data group \$mointunit specifies:

- which scratch files are needed,
- where they are located (path name) and
- (after a statistics run, see below) an estimated file size.

\$statistics mpgrad

statistics run (estimation of disc space needed) for the adjustment of the file sizes will be performed.

Mpgrad: Optional Keywords

\$mp2pair

calculation of MP2 pair correlation energies.

Rimp2: Essential Keywords

Apart from keywords \$maxcor, \$mp2energy and \$freeze (see above) rimp2 also needs

\$cbas file=auxbasis

cross reference for the file specifying the auxiliary basis as referenced in \$atoms. We strongly recommend using auxbasis sets optimized for the corresponding MO basis sets.

Reasonable settings for these keywords may be generated by the tool Rimp2prep. Moreover you may specify by hand:
\$tmpdir /work/thisjob
specification of directory for scratch files; by default files are written to the working directory; works also with capital letters (for consistency with ricc2).

\$c1algorithm

avoids symmetry gymnastics in case of C_{1}-symmetry, rather for debugging

\$cbasopt

enforces calculation of

$$
\frac{-\mid\left\langle i j \| a b>_{(\text {exact })}-\left\langle i j \| a b>\left._{(R I)}\right|^{2}\right.\right.}{(\epsilon(i)+\epsilon(j)-\epsilon(a)-\epsilon(b))},
$$

necessary for characterization of auxiliary basis set quality and for auxiliary basis optimizations; works only for C_{1}-symmetry.
Note: all integrals are kept in memory, so this is for atoms and small molecules only.

\$tplot

Enforces plotting of five largest t-amplitudes as well as five largest norms of t -amplitudes for fixed pair of occupied orbitals $i j$. By additional integer this number may be changed.

\$mp2occ

Enforces plotting of all eigenvalues of the MP2 density matrix.

15.2.13 Keywords for Module Ricc2

Note that beside the keywords listed below the outcome of the ricc2 program also depends on the settings of most thresholds that influence the integral screening (e.g. \$denconv, \$scfconv, \$scftol) and for the solution of Z vector equation with 4-index integrals (for relaxed properties and gradients) on the settings for integrals storage in semi-direct SCF runs (i.e. \$thime, \$thize, \$scfintunit). For the explanation of these keywords see Section 15.2.5.

\$cbas file=auxbasis

Auxiliary basis set for RI approximation. For details Section 15.2.12.
\$freeze
Freeze orbitals in the calculation of correlation and excitation energies. For details see Section 15.2.12,
\$printlevel 1
Print level. The default value is 1 .

\$tmpdir /work/thisjob

Specify a directory for large intermediate files (typically three-index coulomb integrals and similar intermediates), which is different from the directory where the ricc2 program is started.
\$maxcor 20
The data group \$maxcor adjusts the maximum size of core memory in MB
which will be allocated during the RI-CC2 run. This keyword can be set in define or with the Rimp2prep tool, the default is 20 MB .
\$maxcor has a large influence on computation times for RI-CC2 runs! It is recommended to set \$maxcor to ca. $75-85 \%$ of the available (physical) core memory.

\$spectrum unit

The calculated excitation energies and corresponding oscillator strengths are appended to a file named 'spectrum'. Possible values of unit are eV, nm and cm^{-1} or rcm . If no unit is specified, excitation energies are given in a.u.

\$cdspectrum unit

The calculated excitation energies and corresponding rotatory strengths are appended to a file named 'cdspectrum'. unit can have the same values as in \$spectrum.
\$laplace

```
    conv = 5
```

The purpose of this data group is twofold: It activates the Laplace-transformed implementation of SOS-MP2 in the ricc2 module (if the sos option has been specified in \$ricc2) and it provides the options to specify the technical details for the numerical Laplace-transformation.
conv
Threshold for the numerical integration used for the Laplace transformation of orbital energy denominators. The grid points for the numerical integration are determined such that is the remaining root mean squared error (RMSE) of the Laplace transformation is $<10^{- \text {conv }}$. By default the threshold is set to the value of conv given in \$ricc2 (see below).

```
$ricc2
    CCS
    cis
    mp2 d1diag
    cis(d) energy only
    cis(dinf)
    adc(2)
    cc2
    restart
    norestart
    hard_restart
    nohard_restart
```

```
conv = 8
oconv = 7
lindep = 15
maxiter = 25
mxdiis = 10
maxred = 100
iprint = 1
fmtprop = f15.8
geoopt model=cc2 state=(a" 2)
scs cos=1.2d0 css=0.3333d0
sos
gsonly
d1diag
```

specifies the $a b$ initio models (methods) for ground and excited states and the most important parameters and thresholds for the solution of the cluster equations, linear response equations or eigenvalue problems. If more than one model is given, the corresponding calculations are performed successively. Note: The CCS ground state energy is identical with the SCF reference energy, CCS excitation energies are identical to CIS excitation energies. The MP2 results is equivalent to the result from the rimp2 module. cis(dinf) denotes the iterative $\operatorname{CIS}(\mathrm{D})$ variant $\operatorname{CIS}\left(\mathrm{D}_{\infty}\right)$.
mp2 d1diag
Request the calculation of the D_{1} diagnostic in MP2 energy calculations (ignored in MP2 gradient calculations). Note that the evaluation of the D_{1} diagnostic increases the computational costs of the RI-MP2 energy calculation roughly by a factor of 3 .
cis(d) energy only
If the energy only flag is given after the cis(d) keyword, it is assumed that only excitation energies are requested. This switches on some shortcuts to avoid the computation of intermediates needed e.g. for the generation of improved start vectors for CC 2 .
(no)restart
If the restart flag is set, the program will try to restart the CC 2 calculations from previous solution vectors on file. If the norestart flag is set no restart will be done. Default is to do a restart for CC 2 if and only if the file CCRO--1--1---0 exists. Note: There is no restart possibility for CCS/CIS or MP2/CIS(D).
(no)hard_restart
If the hard_restart flag is set, the program will try to reuse integrals and intermediates from a previous calculation. This requires that the restart.cc file has been kept, which contains check sums and some
other informations needed. The hard_restart flag is switched on by default, if the restart.cc file is present.
conv The conv parameter gives the convergence threshold for the CC 2 ground state energy as $10^{- \text {conv }}$. The default value is taken from the data group \$deneps.
oconv
The oconv parameter gives an additional threshold for the residual of the cluster equations (vector function). If this parameter is given, the iterations for the cluster equations are not stopped before the norm of the residual is $<10^{-o c o n v}$. By default the threshold is set to oconv $=$ conv -1 , or $10 \times$ deneps if no input for conv is given.
lindep
If the norm of a vector is smaller than $10^{- \text {lindep }}$, the vector is assumed to be zero. This threshold is also used to test if a set of vectors is linear dependent. The default threshold is 10^{-15}.
maxiter
gives the maximum number of iterations for the solution of the cluster equations, eigenvalue problems or response equations (default: 25).
mxdiis
is the maximum number of vectors used in the DIIS procedures for CC 2 ground state or excitation energies (default: 10).
maxred
the maximum dimension of the reduced space in the solution of linear equations (default: 100).
iprint
print level, by default set to 1 or (if given) the the value of the \$printlevel data group.
fmtprop
Fortran print format used to print several results (in particular oneelectron properties and transition moments) to standard output.
geoopt
specify wavefunction and electronic state for which a geometry optimization is intended. For this model the gradient will be calculated and the energy and gradient will be written onto the data groups \$energy and \$grad. Required for geometry optimizations using the jobex script. Note, that in the present version gradients are only available for ground states at the MP2 and CC2 and for excited states at the CC2 level and not for ROHF based open-shell calculations. Not set by default. The default model is CC2, the default electronic state the ground state. To obtain gradients for the lowest excited state (of those included in the excitation energy calculation, but else of arbitrary multiplicity and symmetry) the short cut s1 can be used. x is treated as synonym for the ground state.
scs
the opposite-spin scaling factor cos and the same-spin scaling factor css can be chosen. If scs is set without further input, the SCS parameters $\cos =6 / 5$ and css $=1 / 3$ are applied. This keyword can presently only be used in connection with MP2.
sos
the SOS parameters $\cos =1.3$ and $\operatorname{css}=0.0$ are applied. This keyword can presently only be used in connection with MP2.
d1diag
request the calculation of the D_{1} diagnostic for the ground state wavefunction. Only needed for MP2 (see above for the alternative input option mp2 d1diag). For all other correlated methods the D_{1} diagnostic is evaluated by default (without significant extra costs).
\$rir12

```
ansatz
r12model
comaprox
cabs
examp
pairenergy
local
corrfac
cabsingles
ump2fixed
```

ansatz char
char $=1,2 *$ or 2

The ansatz flag determines which ansatz is used to calculate the RI-MP2-F12 ground state energy.
(Ansatz 2 is used if ansatz is absent.)
r12model char
char $=\mathrm{A}, \mathrm{A}$ ' or B
The r12model flag determines which approximation model is used to calculate the RI-MP2-F12 ground state energy.
(Ansatz B is used if r12model is absent.)
comaprox char
char $=\mathrm{F}+\mathrm{K}$ or $\mathrm{T}+\mathrm{V}$
The comaprox flag determines the method used to approximate the commutator integrals [T, f_{12}].
(Approximation $\mathrm{T}+\mathrm{V}$ is used if comaprox is absent.)
cabs char val
char $=$ svd or cho
The cabs flag determines the method used to orthogonalize the orbitals of the CABS basis. val is the threshold below which CABS orbitals are removed from the calculation.
(svd 1.0d-08 is used if cabs is absent.)
examp char
char=noinv, fixed or inv
The examp flag determines which methods are used to determine the F12 amplitudes. For inv the amplitudes are optimized using the orbitalinvariant method. For fixed and noinv only the diagonal amplitudes are non-zero and are either predetermined using the coalescence conditions (fixed), or optimized (noinv-not orbital invariant). If char=inv, the F12 energy contribution is computed using all three methods.
(The fixed method is used if examp is absent.)
pairenergy char
char $=$ off or on
If char=off (default), the print out of the F12 contribution to the pair energies is suppressed. The summary of the RI-MP2-F12 correlation energies is always printed out.
local char
char=off, boys or pipek
The active occupied molecular orbitals are localized by Boys or PipekMezey method. Currently, the local flag is restricted to closed shell cases within approximation A and the linear correlation factor. If local is absent, no localization is performed.
corrfac char
char=LCG or R12
The corrfac flag determines which correlation factor is used for the geminal basis. LCG requires the data group $\$ 1 \mathrm{cg}$, which contains the information regarding exponents and coefficients of the linear combination of Gaussians.
cabsingles char
char $=$ off or on
The cabsingles flag determines whether or not the single excitations into the CABS basis are computed.
The CABS singles are computed in any case if the CABS Fock matrix elements are computed anyway for the F12 calculation (i.e., for ansatz 2 or r12model B or comaprox F+K).
ump2fixed char
char=diag or full
The umpfixed flag controls which fixed-amplitude method is used for calculations using ROHF or UHF references. full is more computationally demanding than diag, but gives energies closer to the inv method. If ump2fixed is absent, the full method is used.
ccsdapprox label
defines the approximation to CCSD-F12 which will be used if the MP2F12 calculation is followed by a CCSD or $\operatorname{CCSD}(\mathrm{T})$ calculation. The available approximation and corresponding labels are

| CCSD (F12) | ccsd(f12) |
| :---: | :---: |
| CCSD (F12*) | $\operatorname{ccsd}(\mathrm{f} 12 *)$ |
| CCSD[F12] | ccsd[f12] |
| CCSD-F12b | ccsd-f12b |
| $\operatorname{CCSD}(2)_{\overline{\mathrm{F} 12}}$ | ccsd-pt2f12 |
| $\operatorname{CCSD}(2)_{\overline{\mathrm{F} 12 *}}$ | ccsd(2)f12* |

It is recommended that these approximations are only used in combination with ansatz 2 and the SP approach (i.e. geminal coefficients fixed by the cusp conditions). For CCSD-F12b calculations also the CCSD-F12a energies are calculated as a byproduct. By default a $\operatorname{CCSD}(\mathrm{F} 12)$ calculation is carried out, but it is recommended that whenever appropriate the computationally more efficient $\operatorname{CCSD}\left(\mathrm{F} 12^{*}\right)$ approximation is used.

\$excitations

```
irrep=au multiplicity=1 nexc=4 npre=6 nstart=8
irrep=bg multiplicity=3 nexc=2 npre=4 nstart=5
spectrum states=all operators=diplen,dipvel
exprop states=all operators=qudlen
xgrad states=(ag{3} 1)
conv = 6
thrdiis = 2
preopt = 3
leftopt
bothsides
```

In this data group you have to give additional input for calculations on excited states:
irrep the irreducible representation.
multiplicity
spin multiplicity (1 for singlet, 3 for triplet); default: singlet, not needed for UHF.
nexc the number of excited states to be calculated within this irrep and for this multiplicity.
npre the number of roots used in preoptimization steps (default: npre $=$ nexc).
nstart
the number of start vectors generated or read from file (default: nstart $=$ npre).
spectrum
This flag switches on the calculation of oscillator strengths for excited state - ground state transitions. Setting the parameter states=all is mandatory for the calculation of transition properties in the present version. The operators flag can be followed by a list of operators (see below) for which the transition properties will be calculated. Default is to compute the oscillator strengths for all components of the dipole operator.
exprop
require calculation of first-order properties for excited states. For the states option see spectrum option above; for details for the operators input see below.
xgrad
request calculation of the gradient for the total energy of an excited state. If no state is specified, the gradient will be calculated for the lowest excited state included in the calculation of excitation energies (Note that only a single state should be specified; simultaneous calculation of gradients for several states is in the present version not possible.).
conv convergence threshold for norm of residual vectors in eigenvalue problems is set to $10^{- \text {conv }}$. If not given, a default value is used, which is chosen as $\max \left(10^{- \text {conv }}, 10^{- \text {oconv }}, 10^{-6}\right)$, where conv refers to the values given in the data group \$ricc2.
preopt
convergence threshold used for preoptimization of CC2 eigenvectors is set to $10^{- \text {preopt }}$ (default: 3).

```
thrdiis
```

threshold ($\left.10^{\text {-thrdiis }}\right)$ for residual norm below which DIIS extrapolation is switched on in the modified Davidson algorithm for the non-linear CC2 eigenvalue problem (default: 2).
leftopt
If the flag leftopt is set the left eigenvectors are computed (default is to compute the right eigenvectors, for test purposes only).
bothsides
The bothsides flag enforces the calculation of both, the left and the right eigenvectors (for test purposes only).

\$response

fop unrelaxed_only operators=diplen
gradient
conv $=6$

```
zconv = 6
semicano
nosemicano
thrsemi = 3
```

In this data group you have to give additional input for the calculation of ground state properties and the solution of response equations:
fop This flag switches on the calculation of ground state first-order properties (expectation values). The operators flag can be followed by a list of operators (see below) for which the first-order properties will be calculated. Default is to compute the components of the dipole and the quadrupole moment. The option unrelaxed_only suppress the calculation of orbital-relaxed first-order properties, which require solution the CPHF-like Z-vector equations. Default is the calculation of unrelaxed and orbital-relaxed first-order properties. The unrelaxed_only option will be ignored, if the calculation of gradients is requested (see gradient option below and geoopt in data group $\$$ ricc2).
gradient
require calculation of geometric gradients. In difference to the geoopt keyword in the data group $\$$ ricc2 this can be used to compute gradients for several methods within a loop over models; but gradients and energies will not be written to the data groups $\$$ grad and \$energy as needed for geometry optimizations. Note, that in the present version gradients are only available for MP2 and CC2 and only for a closed-shell RHF reference.
conv convergence threshold for norm of residual vectors in linear response equations is set to $10^{-c o n v}$. If not given in the \$response data group, a default value is used, which is chosen as $\max \left(10^{- \text {conv }}\right.$,
$10^{- \text {oconv }}, 10^{-6}$), where conv and oconv refer to the values given in the data group \$ricc2.
zconv convergence threshold for the norm of the residual vector in the solution of the Z vector equations will be set to $10^{-\mathrm{zconv}}$.
semicano
use semi-canonical formulation for the calculation of (transition) oneelectron densities. Switched on by default. The semi-canonical formulation is usually computationally more efficient than the non-canonical formulation. Exceptions are systems with many nearly degenerate pairs of occupied orbitals, which have to be treated in a non-canonical way anyway. (See also explanation for thrsemi below).
nosemicano
use non-canonical formulation for the calculation of (transition) oneelectron densities. Default is to use the semi-canonical formulation.
thrsemi
the threshold for the selection of nearly degenerate pairs of occupied orbitals which (if contributing to the density) have to be treated in a non-canonical fashion will be set to $10^{- \text {thrsemi }}$. If set to tight the semicanonical algorithm will become inefficient, if the threshold is to large the algorithm will become numerical unstable
zpreopt
threshold for preoptimizating the so-called Z vector (i.e. the lagrangian multipliers for orbital coefficients) with a preceding RI-CPHF calculation with the cbas auxiliary basis. The RI-CPHF equations will be converged to a residual error $<10^{- \text {zpreopt }}$. Default is zpreopt $=4$. This preoptimization can reduce significantly the computational costs for the solution of the Z vector equations for large basis sets, in particular if they contain diffuse basis functions. For calculations on large molecules with small or medium sized basis sets the preoptimization becomes inefficient compared to the large effects of integral screening for the conventional CPHF equations and should be disabled. This option is automatically disabled for ricc2 calculations based on foregoing RI-JK Hartree-Fock calculation.
nozpreopt
disable the preoptimization of the Z vector by a preceding RI-CPHF calculation with the cbas basis set. (Note that the preoptimization is automatically deactivated if the ricc2 calculation is based on a foregoing RI-JK Hartree-Fock calculation.)

Common options for keywords in the data groups \$ricc2, \$response, and \$excitations:

```
operators=diplen,dipvel
```

input of operator labels for first-order properties, transition moments, etc. Currently implemented operators/labels are
overlap overlap (charge) operator: the integrals evaluated in the AO basis are $\langle\mu \mid \nu\rangle$
diplen dipole operator in length gauge: $\langle\mu| r_{i}^{O}|\nu\rangle$ with $i=x, y, z$; the index O indicates dependency on the origin (for expectation values of charged molecules), which in the present version is fixed to $(0,0,0)$
(all three components, individual components can be specified with the labels xdiplen, ydiplen, zdiplen).
dipvel dipole operator in velocity gauge: $\langle\mu| \nabla_{i}|\nu\rangle$
(all three components, individual components can be specified with the labels xdipvel, ydipvel, zdipvel).
qudlen quadrupole operator $\langle\mu| r_{i}^{O} r_{j}^{O}|\nu\rangle$
(all six components, individual components can be specified with
the labels xxqudlen, xyqudlen, xzqudlen, yyqudlen, yzqudlen, zzqudlen).
If all six components are present, the program will automatically give the electronic second moment tensor (which involves only the electronic contributions) $M_{i j}$, the isotropic second moment $\alpha=$ $\frac{1}{3} \operatorname{tr} M$ and the anisotropy

$$
\beta=\sqrt{\frac{1}{2} \sum_{i=x}^{z}\left(M_{i i}-M_{i+1, i+1}\right)^{2}+3 \sum_{i=x}^{z} M_{i, i+1}^{2}} .
$$

Furthermore the traceless quadrupole moment

$$
\Theta_{i j}=\frac{1}{2}\left\langle 3 r_{i} r_{j}-r^{2} \delta_{i j}\right\rangle
$$

(including nuclear contributions) is given.
angmom angular momentum $\langle\mu| L_{i}^{O}|\nu\rangle$
(all three components, individual components can be specified with the labels xangmom, yangmom, zangmom).
nef electronic force on nuclei $\langle\mu| \frac{Z_{I} r_{i}^{I}}{r^{I^{3}}}|\nu\rangle$, where Z_{I} is the charge of the nucleus I and r^{I} is the position vector of the electron relative to the nucleus (all three components for all nuclei: the labels are xnef001, ynef001, znef001, xnef002, etc. where the number depends on the order in the coord file).
states=all
specification of states for which transition moments or first-order properties are to be calculated. The default is all, i.e. the calculations will be done for all excited states for which excitation energies have been calculated. Alternatively, one can select a subset of these listed in parentheses, e.g. states $=(a g\{3\} 1,3-5$; b1u\{1\} 1-3; b2u4). This will select the triplet a_{g} states no. $1,3,4,5$ and the singlet $b_{1 u}$ states no. $1,2,3$ and the singlet (which is default if no $\left\}\right.$ is found) $b_{2 u}$ state no. 4 .
\$D2-diagnostic
Calculate the double-substitution-based diagnostics D_{2}.
\$cc2_natocc
Write MP2/CC2 natural occupation numbers and natural orbitals to a file.
\$cgrad 1000
Calculate the error functional δ_{RI} for the RI approximation of ($a i \mid b j$) integrals

$$
\delta_{\mathrm{RI}}=\frac{1}{4} \frac{\left.\left|\langle a b \| i j\rangle_{\text {exact }}-\langle a b|\right| i j\right\rangle\left._{\mathrm{RI}}\right|^{2}}{\epsilon_{a}-\epsilon_{i}+\epsilon_{b}-\epsilon_{j}}
$$

and its gradients with respect to exponents and coefficients of the auxiliary basis set as specified in the data group \$cbas. The results are written to
\$egrad scaled by the factor given with the keyword \$cgrad and can be used to optimize auxiliary basis sets for RI-MP2 and RI-CC2 calculations (see Section 1.5).

15.2.14 Keywords for Module Relax

\$optimize options

define what kind of nonlinear parameters are to be optimized by relax and specify some control variables for parameter update.
Available options are:
internal on/off
optimize molecular structures in the space of internal coordinates using definitions of internal coordinates given in \$intdef as described in Section 4.1 (default: on).
redundant on/off
optimize molecular structures in redundant internal coordinates using definitions of redundant internal coordinates given in \$redundant. For an optimization in redundant internal coordinates option internal has to be switched on too, and option cartesian has to be switched off (default: on).
cartesian on/off
optimize molecular structures in the space of (symmetry-distinct) cartesian coordinates (default: off).
basis on/off suboptions
optimize basis set exponents (default=off).
Available suboptions are:
logarithm
exponents of uncontracted basis functions will be optimized after conversion into their logarithms (this improves the condition of the approximate force constant matrix obtained by variable metric methods and the behavior of the optimization procedure); scale factors of contracted basis functions will not be affected by the logarithm suboption
scale
ALL basis set exponents will be optimized as scale factors (i.e. contracted blocks and single functions will be treated in the same way); if both suboptions (scale and logarithm) are given the logarithms of the scale factors will be optimized
global on/off
optimize a global scaling factor for all basis set exponents (default: off).

```
NOTES: - basis and global have to be used exclusively!
- if \$optimize has been specified but \$forceapprox is absent, the option \$forceinit on is switched on by default.
- specification of the option \$interconversion on will override \$optimize!
```

\$coordinateupdate options
define some variables controlling the update of coordinates.
Available options are:
dqmax real
maximum allowed total change for update of coordinates. The maximum change of individual coordinate will be limited to $d q_{\max } / 2$ and the collective change $\mathrm{d} q$ will be damped by $d q_{\max } /\langle\mathrm{d} q \mid \mathrm{d} q\rangle$ if $\langle\mathrm{d} q \mid \mathrm{d} q\rangle>d q_{\max } \mathrm{q}$ (default: 0.3)
interpolate on/off
calculate geometry update by inter/extrapolation of geometries of the last two cycles (the interpolate option is always switched on by default, but it is only active ANY time if steepest descent update has been chosen, i.e. \$forceupdate method=none; otherwise it will only be activated if the DIIS update for the geometry is expected to fail)
statistics on/integer/off
provide a statistics output in each optimization cycle by displaying all (the last integer, default setting by define is 5) subsequent coordinates, gradient and energy values (default: on).
\$gdiishistory file=char
the presence of this keyword forces relax to provide informational output about the usage of DIIS for the update of the molecular geometry.
\$interconversion options default=off
special input related to the transformation of atomic coordinates between cartesian and internal coordinate spaces (default: off).

Available options are:
maxiter=n
maximum number of iterations for the iterative conversion procedure internal \rightarrow cartesian coordinates (default: 25).
qconv
convergence criterion for the coordinate conversion (default: 1.d-10).
on/off options
this switch activates special tasks: transform coordinates/gradients/ hessians between spaces of internal/cartesian coordinates using the definitions of internal coordinates given in \$intdef:
available suboptions are:

```
cartesian --> internal coordinate gradient hessian
cartesian <-- internal coordinatethe direction of the transforma- tion is indicated by the direction of the arrow
```

Note: specification of \$interconversion on will override \$optimize!

\$forceupdate method options

this data group defines both the method for updating the approximate force constant matrix and some control variables needed for the force constant update.

Options for method:

```
none no update (steepest descent)
ms suboptions Murtagh-Sargent update
dfp suboptions Davidon-Fletcher-Powell update
bfgs suboptions Broyden-Fletcher-Goldfarb-Shanno update
dfp-bfgs suboptions combined (bfgs+dfp) update
schlegel suboptions Schlegel update
ahlrichs suboptions Ahlrichs update (macro option)
suboptions if method=ms, dfp, bfgs, schlegel, ahlrichs
numgeo=integer number of structures used
maxgeo=integer maximum number of geometries (= rank of the
    update procedure, for ahlrichs only)
ingeo=integer minimum number of geometries needed to start
update
if method=ms, dfp, bfgs:
maxgeo=2, mingeo=1 as default
additional suboptions if method=ahlrichs
modus= char fmode for an explanation see suboptions pulay given below e.g. ahlrichs numgeo=7 mingeo=3 maxgeo=4 modus=<g|dg> dynamic
```

NOTES: if the macro option ahlrichs has been chosen and $n=$ numgeo, $n c y c l=$ 'number of geometries available'

- if ncycl < n : geometry update by inter/extrapolation using the last two geometries
- if $n c y c l \geq n$: diagonal update for the hessian by least mean squares fit; pulay update for the geometry (using specified modus, fmode (see pulay below))
- if $(n c y c l \geq \max (5, n+3)$ and $\max (|g|)<0.01$ and $\bar{g}<0.001$) or $\mathbf{H}_{i j} \neq 0 \forall i \neq j$: diagonal update is replaced by multidimensional BFGS (rank n) update for the hessian
pulay suboptions
try to find an optimal linear combination of the coordinates of the numpul previous optimization cycles as specified by modus (see below).

Available suboptions are:
numpul=integer
number of geometries to be utilized
maxpul=integer
maximum number of geometries
minpul=integer
minimum number of geometries needed to start update
modus=char fmode
char $=\langle\mathrm{g}| \mathrm{g}>$ or $\langle\mathrm{g}| \mathrm{dq}>$ or $<\mathrm{dq} \mid \mathrm{dq}>$ defines the quantity to be minimized ($\mathrm{dq}=$ internal coordinate change).
fmode specifies the force constants to be used (only if char $=\langle\mathrm{g} \mid \mathrm{dq}\rangle$ or <dq|dq>!)
fmode=static: use static force constants
fmode=dynamic: use updated force constants
fail=real
real defines the threshold for the quantity $g * \mathrm{~d} q /|g| *|\mathrm{~d} q|$ which defines the angle between gradient vector and coordinate change (default: 0.1). If pulay is used in connection with a multidimensional BFGS update for the hessian than the default is real=0.0. If $\frac{g \cdot \mathrm{~d} q}{|g| *|d q|}>-$ real the pulay update for the geometry is expected to fail and will be ignored. For example:
pulay numpul=4 maxpul=4 minpul=3 modus=<dq|dq> static fail=0.2
options for \$forceupdate

diagonal

update only the diagonal force constants (update for off-diagonals will be suppressed) (only active if method=ms, dfp, bfgs)
offdamp real
this allows to damp off-diagonal force constants by $1 /$ real (compare offreset, which discards off-diagonals completely). Only values >1.0 will be accepted. This option is active only within one relax run and will be disabled automatically by relax. This is useful in difficult cases, where the non-diagonal update has lead to too large non-diagonal elements of the hessian.
offreset
reset off-diagonal force constants to zero. This option will be active for the current optimization cycle only, i.e. it will be removed by relax after having discarded off-diagonals!
allow=real
optimization cycle specification of a maximum energy change allowed (given in mHartree) which will be accepted using the actual approximate force constant matrix from \$forceapprox; if this energy change will be exceeded, the force constants will be scaled appropriately
(The default: 0.0 means NO action)
scale=real
scaling factor for the input hessian (default: 1.0).
threig=real
lower bound for eigenvalues of the approximate hessian (default: 0.005);
if any eigenvalue drops below threig, it will be shifted to a reasonable value defined by:
reseig=realdefault: texttt0.005.
thrbig=real
upper bound for eigenvalues of the hessian; if any eigenvalue exceeds thrbig, it will limited to this value (default: 1000.0).
damping=real
damp the variable metric update for the hessian by $1 /(1+$ real) (default: $0.0)$.

\$forceinit option

specify initialization of the (approximate) force constant matrix.
Available options are:
on/off
this activates or deactivates initialization; if on has been set, relax will provide an initial force constant matrix as specified by one of the possible initialization options as described below and will store this matrix in data group \$forceapprox; after initialization relax resets \$forceinit to off!
diag=suboptions
provide a diagonal force constant matrix with:
available suboptions are:
real
this will lead to an assignment of diagonal elements (default: 1.0)).
default
this will lead to an assignment of initial force constant diagonals depending on the coordinate type.
individual
Provide individual defined force constant diagonals for

- internal coordinates (supplied in \$intdef ... fdiag=..)
- a global scale factor (\$global ... fdiag=..)

This does not work for basis set optimization. For the correct syntax of 'fdiag=. .' see descriptions of \$intdef, \$global
carthess
read a cartesian (e.g. analytical) hessian from \$hessian and use it as a start force constant matrix; if \$optimize internal has been set: use its transform in internal coordinate space. If large molecules are to be optimized, it may be necessary (large core memory requirements!) to deactivate the numerical evaluation of the derivative of the B-matrix with respect to cartesian coordinates, which is needed to transform \mathbf{H} (cart) $\rightarrow \mathbf{H}$ (int) exactly by specifying no dbdx.
\$last SCF energy change $=$ real
\$last MP2 energy change = real
These keywords depend on the optimization task to be processed and are updated by the corresponding program (i.g. SCF energy).
\$m-matrix options
This data block contains non-default specifications for the m-matrix diagonals. This is of use if some cartesian atomic coordinates shall be kept fixed during optimization.

Available options are:
integer real real real
atomic index followed by diagonal elements of the m-matrix for this atom
\$scratch files
The scratch file ftmp allocated by relax can be placed anywhere in your file systems instead of the working directory by referencing its pathname in this data group as follows:

```
$scratch files
    relax ftmp path/file
```

The first column specifies the program, the second column the scratch file and the third column the pathname of the file to be used as scratch file.

Input Data Blocks Needed by Relax

\$intdef or \$redundant

Definitions of internal coordinates and, optionally, values of internal coordinates (val=..., given in a.u. or degrees) or force constant diagonal elements (fdiag=...).

\$grad

Cartesian coordinates and gradients calculated in subsequent optimization cycles. Entries are accumulated by one of the gradient programs (grad, mpgrad, rimp2, ricc2, egrad, etc.).

\$egrad

Basis set exponents scale factors and their gradients as calculated in subsequent optimization cycles. Entries are accumulated by one of the gradient programs.
\$globgrad
Global scale factors and gradients as calculated in subsequent optimization cycles. Entries are accumulated by the grad or aoforce program.

\$corrgrad

Allows to augment internal SCF gradients by approximate increments obtained from treatments (e.g. correlation or relativistic) on higher level. See the example below.
\$corrgrad
\# coordinate increment
$1 \quad 0.0600$
$8 \quad-0.0850$

\$forceapprox options

Approximate force constant matrix (as needed for geometry optimization tasks). The storage format may be specified by the available options:
format=format
the default format is format=(8f10.5), but other 10-digit f10.x formats (e.g. $x=4,6, .$.) are possible and will be used, after being manually specified within $\$$ forceapprox. See the example below:

```
$forceapprox format=(8f10.4)
    0.9124
    -.0108 0.3347
    0.2101 0.0299 1.3347
    0.0076 0.1088 0.0778 0.6515
```

\$hessian (projected)
this data block contains the analytical cartesian force constant matrix (with translational and rotational combinations projected out) as output by the aoforce program and may be used to supply a high quality force constant matrix \$forceapprox for geometry optimizations (specifying \$forceinit on carthess, or \$interconversion cartesian --> internal hessian).

Relax Output Data Groups

\$coord
either updated cartesian coordinates if a successful coordinate update has been performed, or cartesian coordinates for input internal coordinates if only a conversion from internal to cartesian coordinates has been performed.

\$basis

updated basis set exponents, basis sets contraction coefficients or scaling factors, if \$optimize basis on has been specified.

\$global

updated global scaling factor for all basis set exponents, if \$optimize global on has been specified.

\$forceapprox

an approximate force constant matrix to be used in quasi-Newton type geometry optimizations; this matrix will be improved in subsequent optimization cycles if one of the variable-metric methods (\$forceupdate) has been chosen. See 5.3.13 and 15.2.14.

\$forcestatic

a static (i.e. never updated) approximate force constant matrix to be used in DIIS-type geometry optimizations. It will be initialized by relax specifying: \$forceupdate pulay ...modus=<dq|dq> static.

The next data groups are output by relax (depending on the optimization subject) in order to control the convergence of optimization procedures driven by the shell script jobex.
\$maximum norm of cartesian gradient = real
\$maximum norm of internal gradient $=$ real
\$maximum norm of basis set gradient = real
real is the absolute value of the maximum component of the corresponding gradient.

Other Input/Output data used by Relax

In order to save the effort for conversion of accumulated geometry and gradient data (as needed for the force constant update or the DIIS update of the geometry) to the optimization space, within which the geometry has to be optimized, one may specify the keyword

\$oldgrad

Then the relax program accumulates all subsequent coordinates and gradient as used in optimization in this data group (or a referenced file). This overrides the input of old coordinate and gradient data from data blocks \$grad, \$egrad,as accumulated by the grad program.
degrees

15.2.15 Keywords for Module Statpt

| \$statpt | |
| :--- | :--- |
| itrvec | 0 |
| update | bfgs |
| hssfreq | 0 |
| keeptmode | |
| hssidiag | 0.5 |
| radmax | 0.3 |
| radmin | $1.0 \mathrm{~d}-4$ |
| tradius | 0.3 |
| threchange | $1.0 \mathrm{~d}-5$ |
| thrmaxdispl | $1.0 \mathrm{~d}-3$ |
| thrmaxgrad | $1.0 \mathrm{~d}-3$ |
| thrrmsdispl | $5.0 \mathrm{~d}-4$ |
| thrrmsgrad | $5.0 \mathrm{~d}-4$ |

Only non-default values are written in the control file except:

\$statpt

itrvec 0

Following options are available:

itrvec

Index of the Hessian eigenvector to follow for transition structure search (transition vector). Eigenpairs are sorted in ascending order, i.e. with increasing eigenvalues and start with index 1 . The eigenpairs corresponding to translations and rotations are shifted to the end. For minimization the value 0 has to be specified.
update
Method of hessian update. For minimization default is BFGS, for TS search default is Powell and none is for no update.
hssfreq
Recompute the full Hessian every N'th step during a transition state search. The default is zero and the Hessian is read in or computed in the first step only. If the standard Hessian update methods fail, it can help to use this keyword. Warning: This will make the calculation much more time demanding!

```
keeptmode
```

Freezing transition vector index.
hssidiag
diagonal hessian elements for diagonal Hessian guess (default: 0.5).
radmax
Maximum allowed value for trust radius (default: 0.3).
radmin
Minimum allowed value for trust radius (default: 1.0d-4).
tradius
Initial value for trust radius (default tradius: radmax $=0.3$).

Convergence criteria

```
threchange threshold for energy change (default: 1.0d-5).
thrmaxdispl threshold for maximal displacement element (default: 1.0d-3).
thrmaxgrad threshold for maximal gradient element (default: 1.0d-3).
thrrmsdispl threshold for RMS of displacement (RMS = root mean square)
    (default = 5.0d-4)
thrrmsgrad threshold for RMS of gradient (default: 5.0d-4).
```

All values are in atomic units.

15.2.16 Keywords for Module Moloch

\$properties specifies the global tasks for program moloch by virtue of the following options

```
$properties
    trace off
    moments active
    potential off
    cowan-griffin off
    localization off
    population analyses off
    plot off
    firstorder off
    fit off
```

a missing option or a option followed by the flag off will not be taken into account. The flag active may be omitted. For most of these options (with the only exceptions of trace and cowan-griffin), there are additional data groups allowing for more detailed specifications, as explained below.
moments
if moment is active you need
\$moments Oth 1st 2nd 3rd

```
        point .0 .0 .0
```

to compute the 0th, 1st, 2nd and 3rd moment at the reference point 000 .
potential
if potential is active you need
\$points \#1
pot fld fldgrd shld
point . 0 . 0 . 0
to compute the electrostatic potential (pot) and/or electrostatic field (fld) and/or electrostatic field gradient (fldgrd) and/or the zeroth order contribution to the diamagnetic shielding (shld) at reference point 000 .

localization

if localization is active you need \$boys to perform a boys-localization of orbitals with orbital energies \geq thresholad=-2 Hartrees; localize with respect
to locxyz=x, y and z and write resulting orbitals to lmofile= 'lmo'. At the most sweeps $=10000$ orbital rotations are performed. Non-defaults may be specified using the following suboptions:
lmofile= filename
locxyz dir1 dir2 dir3
threshold real
sweeps integer
population analyses
if population analyses is active you need

```
$mulliken
    spdf molap netto irpspd irpmol mommul
```

to perform a Mulliken population analysis. The options specify the output data:
spdf print molecular orbital contributions to atomic s, p, d, \ldots-populations
molap print molecular orbital contributions to overlap populations
netto print atomic netto populations
irpspd print contributions of (irreducible) representations to atomic $s, p, d, \ldots-$ populations
irpmol print contributions of (irreducible) representations to overlap populations
or
\$loewdin
to perform a Löwdin population analysis (options are invalid here). A Löwdin population analysis is based on decomposing $\sqrt{\mathbf{S}} \mathbf{D} \sqrt{\mathbf{S}}$ instead of DS in case of a Mulliken PA.
or
\$paboon
momao maodump maofile=mao all
to perform a population analysis based on occupation numbers (the options are not necessary and produce some output data concerning the modified atomic orbitals):
momao print MO contributions to occupation numbers of modified atomic orbitals (MAOs).
maodump print all MAOs on standard output
maofile=mao all
print all MAOs to file mao.
This kind of population analysis basically aims at so-called shared electron numbers (SEN) between two or more atoms. By default 2-, 3- and 4 -center contributions to the total density are plotted if they are larger than 0.01 electrons. Thresholds may be individually chosen, as well as the possibility to compute SENs for molecular orbitals: \$shared electron numbers

orbitals

2-center threshold = real
3-center threshold = real
4-center threshold $=$ real
Results of this kind of PA depend on the choice of MAOs. By default, all MAOs with eigenvalues of the atomic density matrices larger than 0.1 will be taken into account. This is a reasonable minimal basis set for most molecules. If modified atomic orbitals shall not be selected according to this criterion, the data group \$mao selection has to be specified

```
$mao selection threshold =real;
```

The default criterion for the selection of MAOs is the occupation number, for which a global threshold can be specified within the same line as the keyword \$maoselection. If the global criterion or threshold is not desirable for some atoms, lines of the following syntax have to be added for each atom type of these.

```
atom symb list nmao= i method=meth threshold=r
```

The parameters in this definition have the following meaning:
symb atom symbol
list list of all atoms for which this definition should apply. The syntax for this list is as usual in TURBOMOLE, e.g. 2,3,8-10,12
nmao $=i$
means number of MAOs to be included
method=meth
means selection criterion for MAOs. meth can be occ (default), eig, or man string, where occ denotes selection of MAOs by occupation numbers, eig selection by eigenvalues and man allows manual selection. In the latter case the string (max. 8 characters) appended to man serves as nickname for the definition of the MAOs to be chosen. This nickname is expected to appear as the leftmost word in a line somewhere within data group \$mao selection and is followed by the indices of the modified atomic orbitals which are to be selected.

```
threshold=r
```

means the threshold to be applied for the selection criteria occ or eig (default: 0.1).

Example:

```
$mao selection threshold= 0.09
        atom c 1,3-5 nmao= 5 method= eig threshold= 0.1
        atom o 2 nmao= 3 method= man olabel
olabel 3-5
```

plot
option plot is out of fashion; to plot quantities on a grid, rather use \$pointval in connection with dscf, ridft, rimp2 or egrad, as described below. If nevertheless plot is active you need

| \$grid \#1
 mo 4a1g
 origin .000000 .000000 .000000
 vector1 1.000000 .000000 .000000
 vector2 .000000 1.000000 .000000
 grid1 range -5.000000 5.000000 points 100
 grid2 range -5.000000 5.000000 points 100
 outfile $=4 a 1 g$ | | | | |
| :--- | :--- | :--- | :--- | :--- |

to obtain two-dimensional plot data of mo 4 a 1 g (the plane is specified by origin and two vectors with grid range and number of grid points) which is written to file 4 a 1 g . Several plots may be obtained ($\# 1, \# 2$ etc.) at the same time. Use tool 'konto' to visualize the plot.
Note: This is the old-fashioned way to plot MOs and densities. A new-and easier-one is to use \$pointval, as described below.
fit
if $f i t$ is active you need
\$vdw_fit
shell number_of_gridpoints distance_from_vdW_surface
refine value_of_potential
shell Each line refers to all atoms, the line specifies a spherical layer of grid points around the atoms. The number of points and their distance from the van der Waals surface [Bohr] are given (the default is 1.0).
refine one line only, smoothing of the layers of grid points around the molecule: the real number is used to define isopotential surfaces on which the points of the layers have to lie.

```
$vdw_radii
element_symbol van_d_waals_radius
```

One line per element has to be specified, it contains the name of the element and the van der Waals radius in [Bohr].

15.2.17 Keywords for wave function analysis and generation of plotting data

Properties of RHF, UHF and (two-component) GHF wave functions as well as those of SCF+MP2 densities or such from excited state DFT-calculations can be directly analyzed within the respective programs (dscf, ridft, mpgrad, rimp2 and egrad). In case of spin-unrestricted calculations results are given for total densities $\left(D^{\alpha}+D^{\beta}\right)$ and spin densities $\left(D^{\alpha}-D^{\beta}\right)$. If not explicitly noted otherwise, in the following " D " is the SCF density, $\mathrm{D}(\mathrm{SCF})$, in case of dscf and ridft, the MP2-corrected density, $\mathrm{D}(\mathrm{SCF})+\mathrm{D}$ (MP2), for mpgrad and rimp2 and the entire density of the excited state in case of egrad. For modules dscf and ridft the analysis of properties may be directly started by calling dscf -proper (or ridft -proper). In case of mpgrad and rimp2 this is possible only, if the MP2 density has already been generated, i.e. after a complete run of mpgrad or rimp2.
Functionalities of analyses are driven by the following keywords.

\$mvd

leads to calculation of relativistic corrections for the SCF total density in case of dscf and ridft, for the SCF+MP2 density in case of rimp2 and mpgrad and for that of the calculated excited state in case of egrad. Quantities calculated are expectation values $\left\langle p^{2}\right\rangle,<p^{4}>$ and the Darwin term $\left(\sum 1 / Z_{A} * \rho\left(R_{A}\right)\right)$.

\$moments

yields calculation of electrostatic moments arising from nuclear charges and total electron densities. Also without setting this keyword moments up to quadrupole are calculated, with respect to reference point $(0,0,0)$. Supported extensions:

```
    $moments <i>
```

 x1 y1 z1
 x2 y2 z2
 By integer i; the maximum order of moments is specified, maximum and default is $i=3$ (octopole moments), real numbers x, y, z allow for the specification of one or more reference points.

\$pop

drives the options for population analyses. By default a Mulliken PA in the basis of cartesian atomic orbitals (CAOs) is performed for the total density $\left(D^{\alpha}+D^{\beta}\right)$ leading to Mulliken (brutto) charges and, in case of spinunrestricted calculations also for the spin density ($D^{\alpha}-D^{\beta}$) leading to Mulliken (brutto) numbers for unpaired electrons. Besides total numbers also contributions from s-, p-, functions are listed separately.

Two-component wavefunctions (only module ridft and only if \$soghf is set): In two-component calculations instead of $S_{z}\left|\left(S_{x}, S_{y}, S_{z}\right)\right|$ is written to the output. Additionally a vector-file named spinvec.txt is written, which includes the resulting spinvector for each atom in the system (also the direction).

The following modifications and extensions are supported, if the respective commands are written in the same line as \$pop:
lall Additional information about p_{x}, p_{y}, p_{z} (and analogous for d and f functions) is displayed (lengthy output).

atoms list of atoms

Contributions are plotted only if arising from atoms selected by list.

thrpl= real

Contributions smaller than thrpl are not displayed (default: 0.01).
overlapMulliken atomic overlap matrix is displayed.
nettoMulliken netto populations (diagonal elements of Mulliken overlap matrix) are calculated.
mosum list of MOs
Summed Mulliken contributions for a group of molecular orbitals defined by numbers referring to the numbering obtained e.g. from the tool eiger. Note that occupancy of MOs is ignored, i.e. all orbitals are treated as occupied.
mo list of MOs
Mulliken contributions for single MOs defined by numbers (independent of whether they are occupied or not). If this option is valid, one may additionally set
dos width=real points=integer
to calculate a (simulated) density of states by broadening the discrete energy levels with Gaussians and superimposing them. The width of each Gaussian may be set by input (default: 0.01 a.u.). The resolution (number of points) may be chosen automatically (default values are usually sufficient to generate a satisfactory plot) or specified by hand. The output files (dos in case of RHF wave functions, and dos_a+b, dos_a-b, dos_alpha, dos_beta; for UHF cases) contain energies (first column), resulting DOS for the respective energy (second column) as well as s-, p-, d-contributions for the respective energy (following columns).

Example:
\$pop mo 23-33 dos atoms 2,3,7-8
leads to Mulliken PA (CAO-basis) for each of the eleven MOs 23-33, regarding only contributions from atoms 2-3 and 7-8 (results are written to standard output) and generation of file(s) with the respective simulated density of states.

\$pop nbo

to perform a natural population analyses 127). The possible options (specified in the same line) are

AO must be provided, the CAO case is not implemented.
$\mathrm{tw}=$ real \quad Threshold t_{w} to circumvent numerical difficulties in computing O_{w} (default: tw=1.d-6).
idbgl=integer Debug level
(default: idbgl=0).
ab For UHF cases: Print alpha and beta density results.
short Print only natural electron configuration and summary.
Example:
\$pop nbo AO ab short atoms 1,2,6
leads to a natural population analysis (AO-basis) with printing the results of alpha and beta densities (only the electron configuration and the summary) for the atoms 1,2 and 6 .

To change the NMB set for atoms, one has to add a $\$$ nbonmb-block in the control file. Example:

```
$nbonmb
    ni s:4 p:2 d:1
    o s:2 p:1
```

leads to a NMB set for Ni of $4 \mathrm{~s}-, 2 \mathrm{p}$ - and 1d-functions and for O of 2 s - and 1 p-functions.
\$pop paboon
to perform a population analyses based on occupation numbers 128 yielding "shared electron numbers (SENs)" and multicenter contributions. For this method always the total density is used, i.e. the sum of alpha and beta densities in case of UHF, the SCF + MP2-density in case of MP2 and the GHF total density for (two-component-)GHF.
The results of such an analysis may depend on the choice of the number of modified atomic orbitals ("MAOs"), which can be specified by an additional
line; without further specification their number is calculated by the method "mix", see below. Note: One should carefully read the information concerning MAOs given in the output before looking at the numbers for atomic charges and shared electron numbers.

\$mao selection options

to specify how MAOs are selected per atom.
Available options are:
a) for the way of sorting MAOs of each atom:

eig

MAOs are sorted according to their eigenvalue (those with largest EW finally are chosen). This is the default.
occ
MAOs are sorted according to their occupation; note that the number of all occupation is NOT the number of electrons in the system. This option is kept rather for historical reasons.
b) for the determination of the number of MAOs:
fix
A fixed number of MAOs is taken for each atom; usually this is the number of shells up to the complete valence shell, e.g. 5 for B-Ne, 6 for $\mathrm{Na}-\mathrm{Mg}$, etc. Exceptions are Elements $\mathrm{Sc}(\mathrm{Y}, \mathrm{La}), \mathrm{Ti}$ (Zr, Hf), $\mathrm{V}(\mathrm{Nb}, \mathrm{Ta})$ for which not all five d-shells are included, but only 2,3 or 4 , respectively. This modification leads to better agreement with partial charges calculated by an ESP-fit.
thr <real>
All MAOs with an eigenvalue larger than <real> are chosen; default is <real>=0.1. This and the following two options are not valid in connection with occ.
max
Maximum of numbers calculated from fix and thr=0.1 is taken.
mix
2:1 mixture of $f i x$ and thr $=0.1$. This choice gives best agreement
(statistical) with charges from an ESP-fit. It is the default choice.
c) for additional information about MAOs:
info
Eigenvalues and occupations for each MAO are written to output. dump

Entire information about each MAO is written to output. Lengthy.
Further for each atom the number of MAOs and the sorting mode can be specified individually in lines below this keyword. Example:
atom 1,3-4 eig 7
leads to choice of the 7 MAOs with largest eigenvalue at atoms 1, 3-4.
\$localize
enables the generation of localized molecular orbitals (LMOs) using Boys localization. By default, all occupied orbitals are included, localized orbitals are written (by default in the AO-basis) to file(s) lmo in case of RHF and lalp and lbet in case of UHF orbitals. Note, that LMOs usually break the molecular symmetry; so, even for symmetric cases the AO (not the SAO) basis is used for the output. The localized orbitals are sorted with respect to the corresponding diagonal element of the Fock matrix in the LMO basis. In order to characterize these orbitals, dominant contributions of (canonical) MOs are written to standard output as well as results of a Mulliken PA for each LMO (for plotting of LMOs see option \$pointval).
The keyword allows for following options (to be written in the same line):
mo list of MOs
Include only selected MOs (e.g. valence MOs) in localization procedure (numbering as available from Eiger).
sweeps=integer
maximum number of orbital rotations to get LMOs; default value is 10000 (sometimes not enough, in particular for highly delocalised systems).
thrcont=real
lower threshold for displaying MO and Mulliken contributions (default: 0.1).

CAO LMOs are written to file in the CAO basis (instead of AO)

\$esp_fit

fits point charges at the positions of nuclei to electrostatic potential arising from electric charge distribution (also possible for two-component calculations, for UHF cases also for spin density). For this purpose the ("real") electrostatic potential is calculated at spherical shells of grid points around the atoms. By default, Bragg-Slater radii, $r_{B S}$, are taken as shell radii, for each atom the number of points is given by $1000 \cdot r_{\mathrm{BS}}^{2}$, the total number of points is the sum of points for each atom reduced by the number of points of overlapping spheres. Non-default shells (one or more) can be specified as follows:

```
    $esp_fit
    shell i1 s1
    shell i2 s2
    \vdots
```

Integer numbers i define the number of points for the respective shell, real numbers s constants added to radii (default corresponds to one shell with $\mathrm{s}=1.0$).

A parameterization very close to that by Kollman (U.C. Singh, P.A. Kollman, J. Comput. Chem. 5(2), 129-145 (1984)) may be obtained by
\$esp_fit kollman

Here five shells are placed around each atom with $r=1.4^{*} r_{v d W}+k, k=0 \mathrm{pm}$, $20 \mathrm{pm}, 40 \mathrm{pm}, 60 \mathrm{pm}, 80 \mathrm{pm}$, and $r_{v d W}$ are the van-der-Waals radii of the atoms.

\$pointval

drives the calculation of space-dependent molecular quantities at 3D grids, planes, lines or single points. Without further specifications the values of densities are plotted on a three-dimensional grid adapted to the molecular size. Data are deposed to output files (suffix plt) that can be visualized directly with the gOpenMol program. In case of RHF-dscf/ridft calculations you get the total density on file td.plt, for UHF-dscf/ridft calculations one gets both values for the total density $\left(D^{\alpha}+D^{\beta}\right)$ on td.plt and the "spin density" ($D^{\alpha}-D^{\beta}$) on sd.plt. For mpgrad/rimp2 calculations one gets in the RHF case the total density ($\mathrm{D}(\mathrm{SCF}+\mathrm{MP} 2)$) on td.plt and the MP2 contribution on mp2d.plt and in the UHF case one obtains the total density ($D^{\alpha}(S C F+$ $M P 2)+D^{\beta}(S C F+M P 2)$) on td.plt, the "spin density" $\left(D^{\alpha}(S C F+M P 2)-\right.$ $\left.D^{\beta}(S C F+M P 2)\right)$ on td.plt, and the respective MP2 contributions on files mp2d.plt and mp2sd.plt. For egrad it is similar, just replace in the filenames mp2 by e.
Integration of density (if absolute value greater than eps) within a sphere (origin x, y, z, radius r) is performed for

```
$pointval integrate x y zr eps
```

By default the origin is at $(0,0,0)$, the radius is chosen large enough to include the whole 3D box and all contributions are regarded ($\mathrm{eps}=0$).
Data different from total and spin densities are generated by following (combinable) settings (to be written in the same line as statement \$pointval):
pot leads to calculation of electrostatic potential arising from electron densities, nuclei and -if present - constant electric fields and point charges. The densities used for calculation of potentials are the same as above; the respective filenames are generated from those of densities by replacement of the "d" (for density) by a "p" (for potential). By "pot eonly" only the electronic contribution to the electrostatic potential is calculated.
fld calculation of electric field. Note, that for 3D default output format (.plt, see below) only norm is displayed. Densities used are the same as above, filenames are generated from those of densities by replacement of " d " (for density) by "f" (for field).
mo list of MO numbers
calculation of amplitudes of MOs specified by numbers referring to the numbering obtained e.g. from the tool eiger in the same format. The respective filenames are self-explanatory and displayed in the output.

Note, that also in MP2 and excited state calculations the HF/DFT ground state orbitals are plotted (and not natural MP2/excited orbitals). Two-component cases: The density of the spinors specified by numbers referring to the numbering obtained e.g. from the file EIGS are visualized. By setting the keyword minco also the amplitudes of the spinor-parts are calculated, whose weights (the probability of finding the electron in this part) lie above the threshold.
lmo list of LMO numbers
calculation of amplitudes of LMOs (previously generated by \$localize) ordered by the corresponding diagonal element of the Fock matrix in the LMO basis.
nmo list of NMO numbers
calculation of amplitudes of NMOs (previously generated by
\$natural orbitals file=natural and \$natural orbital occupation file=natural
dens has to be set, if additionally to one of the above quantities also the density is to be computed.
xc calculation of the Kohn-Sham exchange-correlation potential. It is only valid for DFT calculations and it works for all exchange-correlation functionals, including LHF. Note that for hybrid functionals, only the KohnSham part of the potential will be computed (the HF part is a non-localoperator and can't be plotted). For GGA/MGGA functional only the local part is (currently) computed.
For line plots the output file is tx.vec. For UHF calculations the output files are tx.vec (alpha-spin potential) and sx.vec (beta-spin potential). For line plot the files has three columns: 1: total potential 2: local part (or Slater-potential for LHF) 3: non-local part (or Correction term for LHF)

Output formats may be specified by e.g. $f m t=x y z$ if written to the same line as \$pointval. Supported are:
xyz in case of scalars (density, (L)MO amplitudes, electrostatic potential) this format is: $(x, y, z, f(x, y, z))$. In case of vectors components of the vector and its norm are displayed. This format is valid for all types of grid (3D, plane, line, points, see below), it is the default format in case of calculation of values at single points. Output file suffix is .xyz.
plt only for 3D, default in this case. Data are written to binary files that can be directly read by gOpenMol. Note, that this output is restricted to scalar quantities; thus in case of vectors (E-field) only the norm is plotted. Output file suffix is .plt.
map only for 3D. Data are written to ASCII files that can be imported by e.g. gOpenMol. Note, that this output is restricted to scalar quantities; thus in case of vectors (E-field) only the norm is plotted. Output file suffix is .map.
txt a format compatible with gOpenMol for visualization of vectors v. The format is $x, y, z, v_{x}, v_{y}, v_{z}$.
vec for planes and lines (default in these cases). In case of a line specified by $\alpha \cdot \vec{v}$ (see below) output is $\alpha, f(x, y, z)$ for scalars, for vectors components and norm are displayed. vectors. Analogously, in case of planes it is $\alpha, \beta, f(x, y, z)$. The output (file suffix .vec) may be visualized by plotting programs suited for two-dimensional plots. A command file (termed gnuset) to get a contour plot by gnuplot is automatically generated.
cub only for 3D, writes out data in Cube format which can be imported by many external visualization programs.

For 3D grids non-default boundarys, basis vector directions, origin and resolutions may be specified as follows:

```
$pointval
grid1 vector 0 3 0 range -2,2 points 200
grid2 vector 0 0 -7 range -1,4 points 300
grid3 vector 1 0 0 range -1,1 points 300
origin 1 1 1
```

Grid vectors (automatically normalized) now are $(0,1,0),(0,0,-1),(1,0,0)$, the grid is centered at $(1,1,1)$, and e.g. for the first direction 200 points are distributed between -2 and 2 .
Grids of lower dimensionality may be specified (in the same line as \$pointval) by typing either geo=plane or geo=line or geo=point The way to use is best explained by some examples:

```
$pointval geo=plane
grid1 vector 0 1 0 range -2,2 points 200
grid2 vector 0 0 1 range -1,4 points 300
origin 1 1 1
```

Values are calculated at a plane spanned by vectors $(0,1,0)$ and $(0,0,1)$ centered at $(1,1,1)$.

```
$pointval geo=line
grid1 vector 0 1 0 range -2,2 points 50
origin 0 0 1
```

Values are calculated at a line in direction $(0,1,0)$ centered at $(0,0,1)$. Output format as above.
\$pointval geo=point
753
007
Values are calculated at the two points $(7.0,5.0,3.0)$ and ($0.0,0.0,7.0$).

15.2.18 Keywords for Module Frog

The $a b$ initio molecular dynamics (MD) program frog needs a command file named mdmaster. The interactive Mdprep program manages the generation of mdmaster and associated files. It is always a good idea to let Mdprep check over mdmaster before starting an MD run. Mdprep has online-help for all menus.
In this implementation of $a b$ initio MD, time is divided into steps of equal duration Δt. Every step, the energy and its gradient are calculated and these are used by the frog to work out the new coordinates for the next step along the dynamical trajectory. Both the accuracy of the trajectory and the total computation time thus depend crucially on the time step chosen in Mdprep. A bad choice of timestep will result in integration errors and cause fluctuations and drift in the total energy. As a general rule of thumb, a timestep Δt should be chosen which is no longer than one tenth of the shortest vibrational period of the system to be simulated.
Note that Mdprep will transform velocities so that the total linear and angular momentum is zero. (Actually, for the Leapfrog algorithm, initial velocities are $\Delta t / 2$ before the starting time).

The following keywords are vital for frog:

\$nsteps 75

Number of MD time steps to be carried out. \$nsteps is decreased by 1 every time frog is run and JOBEX -md stops when \$nsteps reaches 0 .

\$natoms 9

Number of atoms in system.
\$current file=mdlog. aa
The file containing the current position, velocity, time and timestep, that is, the input configuration. During an MD run the \$current information is generally kept at the end of the \$log file.
\$log file=mdlog. ZZ
The file to which the trajectory should be logged, i.e. the output: $\mathrm{t}=\mathrm{time}$ (a.u.);
atomic positions $\mathrm{x}, \mathrm{y}, \mathrm{z}$ (Bohr) and symbols at t;
timestep (au) Δt;
atomic symbols and velocities $\mathrm{x}, \mathrm{y}, \mathrm{z}(\mathrm{au})$ at $t-(\Delta t / 2)$;
kinetic energy (H) interpolated at t, ab initio potential energy (H) calculated
at t, and pressure recorded at the barrier surface (atomic units, $1 \mathrm{au}=29.421$
TPa) during the corresponding timestep;
$a b$ initio potential energy gradients $\mathrm{x}, \mathrm{y}, \mathrm{z}(\mathrm{H} / \mathrm{Bohr})$ at t.
This file can be manipulated with LOG2? tools after the MD run (Section 1.5).

```
$turbomole file=control
```

Where to look for TURBOMOLE keywords \$grad etc.

\$md_status

The status of the MD run is a record of the action carried out during the previous MD step, along with the duration of that step. The format matches that of \$md_action below.

Canonical dynamics is supported using the Nosé-Hoover thermostat. This option can be enabled in Mdprep or by the following syntax:

```
$md_status
    canonical T=500 t=100
    from t= -25.0000000000 until t= 0.00000000000
```

Here, T specifies the temperature of the thermostat in $\mathrm{K}(500 \mathrm{~K}$ in the example) and t specifies the thermostat relaxation time in a.u. (100 a.u. in the example). It is advisable to choose the thermostat relaxation 2-10 times larger than the time step. Note that user-defined actions are presently not supported in canonical dynamics mode.

These are optional keywords:
\$seed -123
Integer random number seed

```
$title
```

Arbitrary title

```
$log_history
    100 mdlog.P
71 mdlog.Q
$ke_control
    length 50
    response 1
```

To determine the trends in kinetic energy and total energy (average values and overall drifts) it is necessary to read the history of energy statistics over the recent MD steps. The number of MD steps recorded so far in each log file are therefore
kept in the \$log_history entry: this is updated by the program each step. The length of records needed for reliable statistics and the number of steps over which changes are made to kinetic energy (response) are specified in \$ke_control.

```
$barrier angstroms
    type elps
    limits 5.0 10.0 7.5
    constant 2.0
    thickness 1.0
    temperature 300.0
```

\$barrier specifies a virtual cavity for simulating condensed phases. The optional flag, angstroms, can be used to indicate that data will be entered in Ångstrøms rather than Bohr. type
can be one of orth, elps, or none, for orthorhombic, ellipsoidal, or no barrier (the default) respectively.
limits
are the $+x, y, z$ sizes of the cavity. In this case, an ellipsoid with a major axis of $20 \AA$ along y, semi-major of $15 \AA$ on z , and minor of $10 \AA$ on x. constant
is the Hooke's Law force constant in atomic units of force (H/Bohr) per length unit. Here, it is $2.0 \mathrm{H} / \mathrm{Bohr} / \AA$ ngstrøm, a bastard combination of units.

```
        thickness
```

is the effective limit to the restorative force of the barrier. For this system, an atom at $5 \AA$ into the barrier will feel the same force as at 1.0 Å.
denotes the temperature of the cavity walls in Kelvin. If the system quasi-temperature is below this setpoint, particles will be accelerated on their return to the interior. Alternately, they will be retarded if the system is too warm. A temperature of 0.0 K will turn off wall temperature control, returning molecules to the system with the same momentum as when they encountered the barrier.

```
$constraints angstroms
    tolerance 0.05
    adjpercyc 0.25
    type H O 0.9 1.2
    type F C 0.0 1.7
    type H C -1.0 1.2
```

210.0
$\begin{array}{lll}3 & 1 & 1.54\end{array}$
41 -1.0

\$constraints

specifies and/or automatically generates atomic distance constraints. The optional flag, angstroms, can be used to indicate that data will be entered in Ångstrøms rather than Bohr.

```
tolerance
```

is the convergence criterion for application of constraints. All distances must be within $+/-$ tolerance of the specified constraint. Additionally, the RMS deviation of all constrained distances must be below $2 / 3$ of tolerance. adjpercyc
is the fraction of the total distance correction to be applied on each constraint iteration.
type X A const rmax
commands frog to find the closest A atom to each atom X that is closer than rmax and apply const. The first type line above examines each H atom and looks for any 0 atoms within $1.2 \AA$. The shortest distance, if any, is then fixed at $0.9 \AA$. Similarly, the second type line binds each F to the closest C within $1.7 \AA$, but since const $=0.0$, that distance is fixed at the current value. The third type line attaches H atoms to the appropriate nearby C, but at the current average $\mathrm{H}-\mathrm{C}$ distance multiplied by the absolute value of const.

Explicitly specified constraints are listed by atom index and supercede autogenerated constraints. A positive third number fixes the constraint at that value, while zero fixes the constraint at the current distance, and a negative number unsets the constraint.

The output of frog contains the full list of constrained atom pairs and their current constraints in explicit format.

User-defined instructions allow the user to tell frog to change some aspect of the MD run at some point in time $\mathrm{t}=$ real number. The same format is used for \$md_status above. Here is an example:

```
$md_action
    fix total energy from t=2000.0
    anneal from t=2500.0
    free from t=3000.0
```

In this example, starting from the time 2000.0 a.u., velocities are to be scaled every step to keep average total energy constant. Then, from 2500.0 a.u., gradual cooling at the default rate (annealing) is to occur until the time 3000.0 a.u., when free Newtonian dynamics will resume.

Here are all the possible instructions:

\$md_action

fix temperature from $t=<r e a l>$
fix total energy from t=<real>
These commands cause velocities to be scaled so as to keep the average kinetic energy (i.e. quasi-temperature) or the average total energy approximately constant. This is only possible once enough information about run history is available to give reliable statistics. (Keywords \$log_history, \$ke_control).
\$md_action
set temperature at $\mathrm{t}=$ <real> to $\mathrm{x}=<\mathrm{real}>\mathrm{K}$
set total energy at $t=\langle r e a l>$ to $x=\langle r e a l>H$
set kinetic energy at $\mathrm{t}=<\mathrm{real}>$ to $\mathrm{x}=<\mathrm{real}>\mathrm{H}$
set position file=<filename> at $t=\langle r e a l>$
set velocity file=<filename> at t=<real>
set velocity at $\mathrm{t}=<\mathrm{real}>$ random
set velocity at $t=<$ real> zero
At some time during the $a b$ initio MD run the user can specify a new value for one of the dynamical variables. The old value is discarded. Single values are given by $\mathrm{x}=$ real number. Vectors must be read in frog format from file=file.

\$md_action

anneal from t=<real>
anneal from $t=<r e a l>x=<r e a l>$
quench from $t=<r e a l>$
quench from $t=\langle r e a l>x=<r e a l>f i l e=<f i l e>$
relax at $t=<r e a l>$
In Simulated Annealing MD, the temperature of a run is lowered so as to find minimum-energy structures. Temperature may be lowered gradually by a small factor each step (anneal; default factor 0.905 over 100 steps) or lowered rapidly by reversing all uphill motion (quench; default factor -0.8 each step). The cooling factors may be changed from the default using $\mathrm{x}=$. Another option allows the quenching part of the run to be logged to a separate file. Alternatively, a standard non-dynamical geometry optimization can be carried out in a subdirectory (relax).

```
$md_action
    free from t=<real>
```

Finally, this instruction turns off any previous action and resumes free dynamics. This is the default status of an MD run.

15.2.19 Keywords for Module Mpshift

In order to control the program execution, you can use the following keywords within the control file:
\$csmp2
Switches on the calculation of the MP2 NMR shieldings. The required SCF shielding step will be performed in the same run. This flag will be set by the script mp2prep.
\$traloop n
specifies the number of loops (or 'passes') over occupied orbitals n when doing an MP2 calculation: the more passes the smaller file space requirements-but CPU time will go up. This flag will be set by the script mp2prep.

\$mointunit

Scratch file settings for an MP2 calculation. Please refer to Section 15.2 .12 for a description of the syntax. This flag will be set by the script mp2prep.

\$csconv real

Sets the convergence threshold for the shielding constant of succeeding CPHF iterations. The unit is ppm and the default value is 0.01 .

\$csconvatom integer

This selects the atom number for convergence check after each cphf iteration. After this convergence is reached all other atoms are checked, too (default: 1).
\$thime, \$thize, \$scftol, \$scfintunit, \$scfmo
have the save meaning as in dscf (see Section 15.2.5);
Since mpshift works 'semi-direct' it uses the same integral storage.
\$scratch files
The scratch files allocated by mpshift can be placed anywhere in your file systems instead of the working directory by referencing their pathnames in this data group. All possible scratch files are listed in the following example:
\$scratch files

```
mpshift csssmat path1/file1
mpshift cshsmat path2/file2
mpshift csdgsmat path3/file3
mpshift csusmat path4/file4
```

| mpshift | dens | path5/file5 |
| :--- | :--- | :--- |
| mpshift | fock | path6/file6 |
| mpshift | dfock | path7/file7 |
| mpshift | idvds1 | path8/file8 |
| mpshift | idvds2 | path9/file9 |
| mpshift | idvds3 | path10/file10 |
| mpshift | jdvds1 | path11/file11 |
| mpshift | jdvds2 | path12/file12 |
| mpshift | jdvds3 | path13/file13 |
| mpshift | cshmmat | path14/file14 |

\$trast, \$trand traloop-number

stands for traloop start and traloop end. Each loop or pass in MP2 chemical shift calculations can be done individually by providing the keywords \$trast and $\$$ trand. This can be used to do a simple parallelization of the run:
Create separate inputs for each traloop. Add

```
$trast <number>
$trand <number>
```

in the control files, number goes from 1 to the number of \$traloops. Each calculation will create a restart file called restart.mpshift. To collect all steps and to do the remaining work, copy all restart files to one directory and rename them to restart.mpshift. number, add \$trast -1 and \$trand number_of_traloops to the control file and start mpshift.

15.2.20 Keywords for Parallel Runs

On all systems the parallel input preparation is done automatically. Details for the parallel installation are given in Section 3.2.1. The following keywords are necessary for all parallel runs:
\$parallel_platform architecture
\$numprocs number CPUs
Currently the following parallel platforms are supported:
SMP for systems with very fast communication; all CPUs are used for the linear algebra part. Synonyms for SMP are:
HP V-Class, SP3-SMP and HP S/X-Class
MPP for systems with fast communication like Fast-Ethernet, the number of CPUs that will be taken for linear algebra part depends on the size of the matrices. Synonyms for MPP are:
SP3 and linuxcluster
cluster for systems with slow communication, the linear algebra part will be done on one single node. Synonyms for cluster are:
HP Cluster and every platform that is not known by TURBOMOLE
SGI similar to SMP, but here the server task is treated differently: the MPI implementation on the SGIs would cause this task to request too much CPU time otherwise.
\$numprocs is the number of slaves, i.e. the number of nodes doing the parallel work. If you want to run mpgrad, $\$$ traloop has to be equal to or a multiple of $\$$ numprocs.
For very large parallel runs it may be impossible to allocate the scratch files in the working directory. In this case the \$scratch files option can be specified; an example for a dscf run is given below. The scratch directory must be accessible from all nodes.

```
$scratch files
    dscf dens /home/dfs/cd00/cd03_dens
    dscf fock /home/dfs/cd00/cd03_fock
    dscf dfock /home/dfs/cd00/cd03_dfock
    dscf ddens /home/dfs/cd00/cd03_ddens
    dscf xsv /home/dfs/cd00/cd03_xsv
    dscf pulay /home/dfs/cd00/cd03_pulay
    dscf statistics /home/dfs/cd00/cd03_statistics
    dscf errvec /home/dfs/cd00/cd03_errvec
    dscf oldfock /home/dfs/cd00/cd03_oldfock
    dscf oneint /home/dfs/cd00/cd03_oneint
```

For all programs employing density functional theory (DFT) (i.e. dscf/gradand ridft/rdgrad) \$pardft can be specified:
\$pardft

```
tasksize=1000
memdiv=0
```

The tasksize is the approximate number of points in one DFT task (default: 1000) and memdiv says whether the nodes are dedicated exclusively to your job (memdiv=1) or not (default: memdiv=0).
For dscf and grad runs you need a parallel statistics file which has to be generated in advance. The filename is specified with

```
$2e-ints_shell_statistics file=DSCF-par-stat
```

or
\$2e-ints'_shell_statistics file=GRAD-par-stat
respectively.

The statistics files have to be generated with a single node dscf or grad run. For a dscf statistics run one uses the keywords:

```
$statistics dscf parallel
$2e-ints_shell_statistics file=DSCF-par-stat
$parallel_parameters
    maxtask=400
    maxdisk=0
    dynamic_fraction=0.300000
```

and for a grad statistics run:

```
$statistics grad parallel
$2e-ints'_shell_statistics file=GRAD-par-stat
$parallel_parameters
    maxtask=400
```

maxtask is the maximum number of two-electron integral tasks, maxdisk defines the maximum task size with respect to mass storage (MBytes) and dynamic_fraction is the fraction of two-electron integral tasks which will be allocated dynamically.
For parallel grad and rdgrad runs one can also specify:

\$grad_send_dens

This means that the density matrix is computed by one node and distributed to the other nodes rather than computed by every slave.

In the parallel version of ridft, the first client reads in the keyword \$ricore from the control file and uses the given memory for the additional RI matrices and for RI-integral storage. All other clients use the same amount of memory as the first client does, although they do not need to store any of those matrices. This leads to a better usage of the available memory per node. But in the case of a big number of auxiliary basis functions, the RI matrices may become bigger than the specified \$ricore and all clients will use as much memory as those matrices would allocate even if that amount is much larger than the given memory. To omit this behavior one can use:

```
$ricore_slave integer
```

specifying the number of MBs that shall be used on each client.
For parallel jobex runs one has to specify all the parallel keywords needed for the different parts of the geometry optimization, i.e. those for dscf and grad, or those for ridft and rdgrad, or those for dscf and mpgrad.

Chapter 16

Sample control files

16.1 Introduction

The file control is the input file for TURBOMOLE which directly or by cross references provides the information necessary for all kinds of runs and tasks. control is usually generated by define, the input generator. The following sample control files cover a variety of methods and systems. The keywords themselves are explained in Chapter 15.

16.2 NH_{3} Input for a RHF Calculation

Main File control
\$title
NH3 c3v SVP
\$operating system unix
\$symmetry c3v
\$coord file=coord
\$intdef file=coord
\$atoms
n 1
basis =n def-SVP
h $2-4$
basis =h def-SVP
\$pople AO
\$basis file=basis
\$rundimensions
$\operatorname{dim}($ fock, dens $)=495$
natoms=4
nshell=15
nbf (CAO) $=30$
$\operatorname{nbf}(\mathrm{AO})=29$
$\operatorname{dim}(t r a f o[S A O<-->A O / C A O])=69$
rhfshells=1
\$scfmo file=mos
\$closed shells

| a1 | $1-3$ | |
| :--- | :--- | :--- |
| e | 1 | $\left(\begin{array}{ll}2 & \\ \hline\end{array}\right.$ |

\$scfiterlimit 30
\$scfconv 7
\$thize .10000000E-04
\$thime 5
\$scfdamp start= . 500 step= . 050 min= . 100
\$scfdump
\$scfintunit
unit=30 size=0 file=twoint
\$scfdiis start=0.5
\$drvopt
cartesian on
basis off
global off
hessian on

```
    dipole on
    nuclear polarizability
$interconversion off
    qconv=1.d-10
    maxiter=25
$optimize
    internal on
    cartesian off
    global off
    basis off logarithm
$coordinateupdate
    dqmax=0.3
    interpolate on
    statistics 5
$forceupdate
    ahlrichs numgeo=0 mingeo=3 maxgeo=4 modus=<g|dq> dynamic fail=0.1
    threig=0.005 reseig=0.005 thrbig=3.0 scale=1.00 damping=0.0
$forceinit on
    diag=default
$energy file=energy
$grad file=grad
$forceapprox file=force
$lock off
$last step define
$end
```

File coord

| \$coord | | | |
| :---: | :---: | :---: | :---: |
| . 00000000000000 | . 000000 | 000000 | . 54561506935122 |
| -. 878062331115661. | 1.520848 | 970468 | -. 18187168978374 |
| -. $87806233111566-1$. | -1.520848 | 970468 | -. 18187168978374 |
| 1.75612466223131 | . 000000 | 00000 | -. 18187168978374 |
| \$intdef | | | |
| \# definitions of internal coordinates | | | |
| 1 k 1.0000000000000 stre | tre 4 | 1 | val= 1.90084 |
| 2 k 1.0000000000000 bend | bend 4 | 31 | val= 106.27756 |
| 1.000000000000 bend | bend 3 | 2 | |
| 1.000000000000 bend | bend 2 | 41 | |
| \$end | | | |

File basis

```
$basis
*
n def-SVP
# n (7s4p1d) / [3s2p1d] {511/31/1}
*
    5 s
    1712.8415853 -.53934125305E-02
    257.64812677 -.40221581118E-01
    58.458245853 -. 17931144990
    16.198367905 -.46376317823
    5.0052600809 -.44171422662
        1 s
    .58731856571 1.0000000000
        s
    .18764592253 1.0000000000
        3 p
    13.571470233 -.40072398852E-01
    2.9257372874 -. 21807045028
    .79927750754 -. 51294466049
        1 p
        .21954348034 1.0000000000
        d d
    1.0000000000 1.0000000000
*
h def-SVP
# h (7s) / [3s] {511}
*
    3 s
    13.010701000 . 19682158000E-01
    1.9622572000 . }1379652400
    .44453796000 . 47831935000
        1 s
    .12194962000 1.0000000000
        1 p
    .800000000000 1.0000000000
*
$end
```

File mos

```
    1 a1 eigenvalue=-.15633041862301D+02 nsaos=10
.98699003163455D+00-.47221435341751D-01 . 55873125006179D-02-.48016374887169D-02
.26746008768233D-02 .20823779196149D-03 .14270460008808D-01 .90849517503597D-02
.58676121352806D-03 .29091871198884D-03
    2 a1 eigenvalue=-.99896275238736D+00 nsaos=10
.26412162337482D+00 .51846472345768D+00 . 37623729061179D+00-.77139882704089D-02
-.47252329287316D-02-.21494050853221D-02 . 11795673774658D+00 . 83316086019184D-01
-.11229203933488D-01-.27038186251429D-02
    3 a1 eigenvalue=-.57101279949392D+00 nsaos=10
-. 35584199011701D-01-.96938258881594D-01-.70254605702716D-01 . 65569041318341D+00
-.44746149963029D+00 .40094287741992D-03 .51691151834284D-01 .47722350097160D-01
    .19189122068531D-02 .56638497851180D-03
    1 e eigenvalue=-.64374209294851D+00 nsaos=9
-.49313475446075D+00 . 33757893447603D+00-.76142296567409D-04-.74524664248740D-04
-. 26407572210452D+00-.22619038902975D+00-.50035170531670D-05-.12199166245418D-03
    .63021657663245D-04
$end
```


16.3 NO_{2} input for an unrestricted DFT calculation

Main File control
\$title
NO2 c2v UKS SVP
\$operating system unix
\$symmetry c2v
\$coord file=coord
\$intdef file=coord
\$atoms
n 1
basis =n def-SVP

- 2-3
basis =o def-SVP
\$pople AO
\$basis file=basis
\$rundimensions
$\operatorname{dim}($ fock, dens $)=1098$
natoms=3
nshell=18
nbf (CAO) $=45$
nbf (AO) $=42$
dim(trafo[SAO<-->AO/CAO])=85
rhfshells=2
\$uhfmo_alpha none file=alpha
\$uhfmo_beta none file=beta
\# none : hamilton core guess will be made
\# files alpha and beta will be generated by the program
\$uhf
\$alpha shells

| a1 | $1-6$ | $\left(\begin{array}{ll}1 &) \\ \text { a2 } & 1 \\ \text { b1 } & 1-4 \\ \text { b2 } & 1 \\ \text { \$beta } & \text { shells } \\ \text { a1 } & 1-5 \\ \text { a2 } & 1 \\ \text { b1 } & 1-4 \\ \text { b2 } & 1\end{array}\left(\begin{array}{ll}1 & (\end{array}\right)\right.$ |
| :---: | :---: | :---: |

\$scfiterlimit 30
\$scfconv 7
\$thize .10000000E-04

```
$thime 5
$scfdamp start=1.500 step= . 050 min= . }10
$scfdump
$scfintunit
    unit=30 size=2 file=/work/user/twoint
$scfdiis start=0.5
$scforbitalshift closedshell=.3
$drvopt
    cartesian on
    basis off
    global off
    hessian on
    dipole on
    nuclear polarizability
$interconversion off
    qconv=1.d-10
    maxiter=25
$optimize
    internal on
    cartesian off
    global off
    basis off logarithm
$coordinateupdate
    dqmax=0.3
    interpolate on
    statistics 5
$forceupdate
    ahlrichs numgeo=0 mingeo=3 maxgeo=4 modus=<g|dq> dynamic fail=0.1
    threig=0.005 reseig=0.005 thrbig=3.0 scale=1.00 damping=0.0
$forceinit on
    diag=default
$energy file=energy
$grad file=grad
$forceapprox file=force
$lock off
$dft
    functional b-p
    gridsize m3
$last step define
$end
```

File coord

```
$coord
        .00000000000000 .000000000000000 -1.00494155217173 n
        1.85766051386774 . 000000000000000 . 50247077608587 o
    -1.85766051386774 .00000000000000 . 50247077608587 ○
$intdef
# definitions of internal coordinates
    1 k 1.0000000000000 stre 2 1 val= 2.39232
    2 d 1.0000000000000 stre 3 1 val= 2.39232
    3k 1.0000000000000 bend 2 3 1 val= 101.88429
$end
```

File basis
\$basis
*
n def-SVP
\# n (7s4p1d) / [3s2p1d] \{511/31/1\}
*
5 s
$1712.8415853-.53934125305 \mathrm{E}-02$
257.64812677 -. $40221581118 \mathrm{E}-01$
$58.458245853-.17931144990$
$16.198367905-.46376317823$
$5.0052600809-.44171422662$
1 s
$.58731856571 \quad 1.0000000000$
1 s
. 187645922531.0000000000
3 p
$13.571470233-.40072398852 \mathrm{E}-01$
$2.9257372874-.21807045028$
$.79927750754-.51294466049$
1 p
.219543480341 .0000000000
1 d
$1.0000000000 \quad 1.0000000000$
*
o def-SVP
\# ○ (7s4p1d) / [3s2p1d] \{511/31/1\}
*
5 s

| 2266.1767785 | -. 53431809926E-02 |
| :---: | :---: |
| 340.87010191 | -. 39890039230E-01 |
| 77.363135167 | -. 17853911985 |
| 21.479644940 | -. 46427684959 |
| 6.6589433124 | -. 44309745172 |
| 1 s | |
| . 80975975668 | 1.0000000000 |
| 1 s | |
| . 25530772234 | 1.0000000000 |
| 3 p | |
| 17.721504317 | . $43394573193 \mathrm{E}-01$ |
| 3.8635505440 | . 23094120765 |
| 1.0480920883 | . 51375311064 |
| 1 p | |
| . 27641544411 | 1.0000000000 |
| 1 d | |
| 1.2000000000 | 1.0000000000 |
| | |
| \$end | |

16.4 TaCl_{5} Input for an RI-DFT Calculation with ECPs

Main File control

\$title
\$operating system unix
\$symmetry d3h
\$coord file=coord
\$intdef file=coord
\$atoms
ta 1
jbas=ta def-SVP
basis =ta def-SVP
ecp =ta def-ecp
cl 2-6
jbas=cl def-SVP
basis =cl def-SVP
\$pople AO
\$basis file=basis
\$ecp file=basis
\$rundimensions
$\operatorname{dim}($ fock, dens $)=7662$
natoms=6
nshell=51
nbf (CAO) $=122$
$\operatorname{nbf}(A O)=115$
$\operatorname{dim}(\operatorname{trafo}[S A O<-->A O / C A O])=346$
\$scfmo none file=mos
\# none : hamilton core guess will be made
\# file mos will be generated by the program
\$scfiterlimit
30
\$scfconv 6
\$thize .10000000E-04
\$thime 5
\$scfdamp start= . 900 step= . 050 min= . 100
\$scfdump
\$scfintunit
unit=30 size=0 file=twoint
\$scfdiis start=0.5
\$drvopt
cartesian on
basis off
global off

```
    hessian on
    dipole on
    nuclear polarizability
$interconversion off
    qconv=1.d-10
    maxiter=25
$optimize
    internal on
    cartesian off
    global off
    basis off logarithm
$coordinateupdate
    dqmax=0.3
    interpolate on
    statistics 5
$forceupdate
    ahlrichs numgeo=0 mingeo=3 maxgeo=4 modus=<g|dq> dynamic fail=0.1
    threig=0.005 reseig=0.005 thrbig=3.0 scale=1.00 damping=0.0
$forceinit on
    diag=default
$energy file=energy
$grad file=grad
$forceapprox file=force
$lock off
$dft
    functional b-p
    gridsize m3
$last step define
$ricore 20
$ridft
$jbas file=auxbasis
$closed shells
    a1' 1-11 ( 2 )
    a2' 1-2 ( 2 )
    e' 1-10 ( 2 )
    a2" 1-8 ( 2 )
    e" 1-4 ( 2 )
$end
```

File coord
\$coord

| $2.19392179448315-3$. | -3.79998401587749 | | . 00000000000000 | | cl |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2.19392179448315 3. | 3.79998401587749 | | . 00000000000000 | | cl |
| -4.38784358896629 . | . 00000000000000 | | . 00000000000000 | | c |
| . 00000000000000 . | . 00000000000000 | | 4.46615918865523 | | 1 |
| . 00000000000000 . | . 00000000000000 | | -4.46615918865523 | | cl |
| \$intdef | | | | | |
| \# definitions of internal coordinates | | | | | |
| 1 k 1.0000000000000 stre | stre 1 | 2 | val= | 4.38784 | |
| 2 k 1.0000000000000 stre | stre 1 | 5 | val= | 4.46616 | |
| \$end | | | | | |

File basis
\$basis
*
ta def-SVP
\# ta (7s6p5d) / [6s3p2d] \{211111/411/41\}
*
2 s
14.400000000 . 99343296745
$12.000000000-1.6510077975$
1 s
5.07014773021 .0000000000

1 s
.860333564871 .0000000000
1 s
.371589388941 .0000000000
1 s
.107453362541 .0000000000
1 s
. $39142776556 \mathrm{E}-01 \quad 1.0000000000$
4 p
7.4188720000 . 26979695152
$5.6984100000-.46968874449$
1.1777211960 . 50905100155
. 54478533555 . 52298161137
1 p
. $22309270117 \quad 1.0000000000$
1 p
. $43100000000 \mathrm{E}-01 \quad 1.0000000000$
4 d
$3.9738796278-.52799310714 \mathrm{E}-01$
1.4528884813 . 18558319471

```
    . }61042908544 . 42959071631
    . }24216276510.4349722823
    1 \mp@code { d }
    .87909318337E-01 1.0000000000
*
cl def-SVP
# cl (7s5p) / [6s2p] {211111/41}
*
    s s
    10449.827566 . 19708362484E-02
    1571.7365221 .14754727977E-01
    357.12065523 .66679112875E-01
    100.25185935 . }1722892408
    30.812727554 . }1588378610
        3 s
    51.923789434 -. 10009298909
    5.7045760975 . }6084175275
    2.3508376809 . 54352153355
        1 s
    .44605124672 1.0000000000
        1 s
    .16848856190 1.0000000000
        5 p
    307.66790569 -.87801484118E-02
    72.102015515 -.63563355471E-01
    22.532680262 -. 24016428276
    7.8991765444 -.47798866557
    2.8767268321 -. 38515850005
        1 p
    .77459363955 1.0000000000
        1 p
        .21037699698 1.0000000000
        d d
        .65000000000 1.0000000000
*
$ecp
*
ta def-ecp
*
    ncore = 60 lmax = 3
# coefficient r^n exponent
f
12.0179609 2 2.0178811
```

```
s-f
\begin{tabular}{rrr}
1345.8806470 & 2 & 14.5464077 \\
36.7668062 & 2 & 7.2732038 \\
-12.0179609 & 2 & 2.0178811
\end{tabular}
p-f
        378.4253015 2 9.9355653
        22.2930909 2 4.9677824
        -12.0179609 2 2.0178811
d-f
        104.8839557 2 6.3473769
        8.7558481 2 3.1736885
        -12.0179609 2
    2.0178811
*
$end
```

File auxbasis

```
$jbas
```

*

ta def-SVP
*

| 3 s | |
| :---: | :---: |
| 15.521335 | -. $493702989 \mathrm{D}+00$ |
| 7.555743 | . 259256574D+01 |
| 3.699576 | -. 523168657D+01 |
| 1 s | |
| 1.820141 | . $262393615 \mathrm{D}+01$ |
| 1 s | |
| 0.898838 | . $157711902 \mathrm{D}+01$ |
| 1 s | |
| 0.445062 | . $200789711 \mathrm{D}+00$ |
| 1 s | |
| 0.220729 | . $185974307 \mathrm{D}+00$ |
| 1 s | |
| 0.109530 | .765184411D-01 |
| 1 p | |
| 1.5024958 | 1.0 |
| 1 p | |
| 0.5629855 | 1.0 |
| 1 p | |
| 0.2281880 | 1.0 |
| 1 p | |
| 0.09507835 | 1.0 |

```
    2 d
        1.337006
        .190072032D-01
        0.599535
            -. 155214344D-01
        d d
        0.280427
            -.138946250D-01
        d
        0.133078 -.895263676D-02
        1 f
        1.1428211 1.0
        f
        0.4395465 1.0
        f
        0.1758186 1.0
        3 g
        1.630421 .100251139D+00
        0.747093 .737448223D-01
        0.349040 .276219913D-01
        1 g
        0.164143 .546316580D-02
*
*
cl def-SVP
*
        s
        4097.080409 . 198054511D+01
        1203.083193 .530973450D+01
        386.280948 . 132352655D+02
        135.337690 .107149960D+02
        51.567046 -. 132565114D+01
        21.261034 .271180364D+01
        9.420135 .754640511D+01
        4.445228 .173603618D+01
        1 s
        2.209399 -.140197496D+01
        1 s
        1.141575 .982719736D+00
        1 s
        0.604182 .464178589D+00
        1 s
        0.322378 .369336889D+00
        4 ~ p
        51.8499902611 .359335506D-01
        17.5847835188 -.869599318D-01
```


16.5 Basisset optimization for Nitrogen

Main File control

```
$title
    Basisset-optimization for nitrogen SV(P)
$operating system unix
$symmetry oh
#--- uncomment following line to clean the basis-file after optimization ----
#$dump basis set
$coord file=coord
$user-defined bonds file=coord
$pople AO
$basis file=basis
$rundimensions
    dim(fock,dens)=141
    natoms=1
    nshell=6
    nbf (CAO)=15
    nbf(AO)=14
    dim(trafo[SAO<-->AO/CAO])=17
    rhfshells=2
$scfmo none file=mos
$roothaan 1
        a = 1 b = 2
$scfiterlimit 60
$scfconv 10
$thize 0.10000000E-04
$thime 5
$scfdamp start=1.500 step=0.050 min=0.100
$scfdump
$scfintunit
    unit=30 size=90 file=twoint
$scfdiis start=0.5
$scforbitalshift closedshell=.4
$drvopt
    cartesian off
#---- optimize basis! -> basis on ----
    basis on
    global off
    hessian on
    dipole on
    nuclear polarizability
```

```
$interconversion off
    qconv=1.d-7
    maxiter=25
$optimize
    internal off
    cartesian off
    global off
#---- optimize basis! -> basis on logarithm ----
    basis on logarithm
$coordinateupdate
    dqmax=0.3
    interpolate on
    statistics 5
$forceupdate
    ahlrichs numgeo=0 mingeo=3 maxgeo=4 modus=<g|dq> dynamic fail=0.6
    threig=0.005 reseig=0.005 thrbig=3.0 scale=1.00 damping=0.0
$forceinit on
    diag=default
$energy file=energy
$grad file=gradient
#---- optimize basis! -> $egrad file=egradient ----
$egrad file=egradient
$forceapprox file=forceapprox
$lock off
$atoms
n 1
    basis =n def-SV(P)
$closed shells
    a1g 1-2
    (2)
$open shells type=1
    t1u 1
    ( 1 )
\$end
```

File coord
\$coord
0.0000000000000
0.00000000000000
0.00000000000000
n
\$user-defined bonds
\$end

File basis

```
n def-SV(P)
# n (7s4p1d) / [3s2p1d] {511/31/1}
# use expopt to optimize exponents and contopt to optimize contractions
*
    5 s expopt contopt
    1712.8415853 0.53934125305E-02
    257.64812677 0.40221581118E-01
    58.458245853 0.17931144990
    16.198367905 0.46376317823
    5.0052600809 0.44171422662
        1 s expopt
0.58731856571 1.0000000000
        1 s expopt
0.18764592253 1.0000000000
    3 p expopt contopt
    13.571470233 0.40072398852E-01
    2.9257372874 0.21807045028
0.79927750754 0.51294466049
    1 p expopt
0.21954348034 1.0000000000
# 1 d
# 1.0000000000 1.0000000000
*
```

File mos

```
$scfmo scfconv=10 format(4d20.14)
# SCF energy is -54.3329250250 a.u. (virial theorem = 2.000000001)
#
    1 a1g eigenvalue=-.15623888057347D+02 nsaos=3
-.99166890864040D+00-.28420294406651D-010.91519592317893D-02
    2 a1g eigenvalue=-.92524548524703D+00 nsaos=3
0.30506869715453D+00-.65051761026701D+00-.44610487551870D+00
    3 a1g eigenvalue=0.74881229854801D+00 nsaos=3
0.30759302935434D+00-.16295969601691D+010.16126161147521D+01
    1 t1u eigenvalue=-.56865046629517D+00 nsaos=2
0.67926397018841D+000.46005039868410D+00
    2 t1u eigenvalue=0.96169069264790D+00 nsaos=2
-.95675659621171D+000.10794148212163D+01
$end
```


16.6 ROHF of Two Open Shells

Extracts from control for O_{2} in $D_{3 d}$ Symmetry
\# HF-SCF/SVP

```
# Reference: triplet-sigma in D3d
# This is a Roothaan case (as is D-infinity-h).
#
$coord
\begin{tabular}{rrrr}
0.0 & 0.0 & 1.08597397921317 & \(\circ\) \\
0.0 & 0.0 & -1.08597397921317 & \(\circ\)
\end{tabular}
```

\$symmetry d3d
\$closed shells

| a1g | $1-3$ | |
| :--- | :--- | :--- |
| a2u | $1-2$ | |
| eu | 1 | (2) |

\$open shells type=1
eg $\quad 1$
\$roothaan 1

| a | 1 | $b=2$ | |
| :---: | :---: | :---: | :---: |
| \$energy | SCF | SCFKIN | SCFPOT |
| 1 | -149.4774402753 | 149.4799190239 | -298.9573592992 |

\# Reference: singlet-delta in D3d
\# This is a Roothaan case (as is D-infinity-h).
\#
\$coord
0.0
0.0
1.08597397921317
o
0.0
0.0
-1. 08597397921317
o
\$symmetry d3d
\$closed shells

| a1g | $1-3$ |
| :--- | :--- |
| a2u | $1-2$ |
| eu | 1 |

(2)
(2)
\$open shells type=1
eg $\quad 1$
(1)

| \$roothaan | 1 | | |
| :---: | :---: | :---: | :---: |
| a | $=1 / 2 \quad b=0$ | | SCFPOT |
| \$energy | SCF | SCFKIN | SCF |
| 1 | -149.4297623470 | 149.4298692899 | -298.859316369 |

Extracts from control for O_{2} in $D_{2 h}$ Symmetry

\# HF-SCF/SVP

```
# Triplet-sigma in D2h
#
$coord
\begin{tabular}{lrrr}
0.0 & 0.0 & 1.08597397921317 & 0 \\
0.0 & 0.0 & -1.08597397921317 & 0
\end{tabular}
\$symmetry d2h
\$closed shells
\begin{tabular}{|c|c|c|c|}
\hline ag & 1-3 & ( 2 ) & \\
\hline b1u & 1-2 & ( 2 ) & \\
\hline b2u & 1 & ( 2 ) & \\
\hline b3u & 1 & ( 2 ) & \\
\hline \multicolumn{4}{|l|}{\$open shells type=1} \\
\hline b2g & 1 & ( 1 ) & \\
\hline b3g & 1 & ( 1 ) & \\
\hline \multicolumn{4}{|l|}{\$roothaan} \\
\hline \multicolumn{4}{|c|}{\(a=1 \quad b=2\)} \\
\hline \$energy & SCF & SCFKIN & SCFPOT \\
\hline 1 & -149.4774402750 & 149.4798706643 & -298.9573109393 \\
\hline
\end{tabular}
```

```
# Singlet-delta in D2h : xx-yy component
# where x = b2g and y = b3g. In D-infinity-h, b2g and b3g combine to eg.
#
$coord
\begin{tabular}{rrrr}
0.0 & 0.0 & 1.08597397921317 & 0 \\
0.0 & 0.0 & -1.08597397921317 & 0
\end{tabular}
$symmetry d2h
$closed shells
\begin{tabular}{lll} 
ag & \(1-3\) \\
b1u & \(1-2\) & \((2)\) \\
\hline
\end{tabular}
    b2u 1 ( 2 )
    b3u 1 ( 2 )
$open shells type=1
    b2g 1 ( 1 )
    b3g 1 ( 1 )
$roothaan 2
$rohf
1b2g-1b3g a = 0 b = 2
```

| $1 \mathrm{l} 2 \mathrm{~g}-1 \mathrm{~b} 2 \mathrm{~g}$ | $\mathrm{a}=1$ | $\mathrm{~b}=0$ | | |
| :---: | :---: | :---: | :---: | :---: |
| $1 \mathrm{~b} 3 \mathrm{~g}-1 \mathrm{~b} 3 \mathrm{~g}$ | $\mathrm{a}=1$ | $\mathrm{~b}=0$ | | |
| \$energy | SCF | | SCFKIN | SCFPOT |
| 1 | -149.4297623516 | 149.4298351805 | -298.8595975321 | |

```
# Singlet-delta in D2h : xy+yx component
# (an example of the general type: [xy]-singlet)
# where in D2h x = b2g and y = b3g are of different symmetry.
# In D-infinity-h, b2g and b3g combine to eg; see the reference
# calculation in D3d above.
#
$coord
\begin{tabular}{rrrr}
0.0 & 0.0 & 1.08597397921317 & 0 \\
0.0 & 0.0 & -1.08597397921317 & 0
\end{tabular}
```

\$symmetry d2h
\$closed shells

| ag | $1-3$ | $\left(\begin{array}{ll}2 &) \\ \text { b1u } & 1-2 \\ \text { b2u } & 1\end{array}\right.$ |
| :--- | :--- | :--- |
| b3u | 1 | (2) |

| \$open shells type=1 | |
| :---: | :---: |
| b2g | 1 |
| b3g | 1 |

| \$roothaan | 2 | | |
| :---: | :---: | :---: | :---: |
| \$rohf | | | |
| $1 \mathrm{~b} 2 \mathrm{~g}-1 \mathrm{~b} 3 \mathrm{~g}$ | $\mathrm{a}=1$ | $\mathrm{b}=-2$ | |
| $1 \mathrm{~b} 2 \mathrm{~g}-1 \mathrm{~b} 2 \mathrm{~g}$ | $\mathrm{a}=0$ | $\mathrm{b}=0$ | |
| $1 \mathrm{~b} 3 \mathrm{~g}-1 \mathrm{~b} 3 \mathrm{~g}$ | $\mathrm{a}=0$ | $\mathrm{b}=0$ | |
| \$energy | SCF | SCFKIN | SCFPOT |
| 1 | -149.4297623501 | 149.4298391833 | -298.8596015334 |

Chapter 17

The Perl-based Test Suite Structure

17.1 General

Testing the Turbomole modules for correctness and speed is the first task once the coding is completed. It is subject to automatization and thus requires a structure which is as simple and flexible as possible. In the Perl-based test suite this is implemented by a Perl script TTEST which performs all the testing and benchmarking tasks and resides in the central scripts directory of the Turbomole installation. The test examples are located in subdirectories of the TURBOTEST directory, grouped according to the modules modules to be tested and a rough short/long classification. The benchmark suite shows the same directory structure and is rooted in the TURBOBENCH directory.
The central idea of the Perl-based test suite is that only the specific information about an individual test example is included in its local directory along with the input and reference files. This information is stored in the criteria file CRIT which contains the program calls, test criteria, and specific reference timings. Running the test script creates a new test subdirectory, usually called like TESTDIR.i786-pc-linux-gnu, where the Turbomole programs are run and the results are summarized in the protocol file TESTPROTOKOLL.

17.2 Running the tests

Starting a single test example is simple. Change to the test example of your choice and call the TTEST script without arguments. The test is started in a subdirectory named TESTDIR.sysname, where sysname is the current platform name as returned by the Sysname script. The tested executable, a short description, and the test summary are output to the screen. Detailed information about the performed com-
mands and results of all test criteria are found in the TESTPROTOKOLL file in the test subdirectory.

The default location for the binaries and scripts used for testing is the \$TURBODIR directory. If you like to test some other, e.g., your local version of the Turbomole binaries or scripts, you can specify the loading paths by the -1 or -1 s options for the binaries and scripts, respectively,

```
TTEST -l /usr/local/TURBOMOLE/bin/i786-pc-linux-gnu \
    -ls /usr/local/TURBOMOLE/scripts.
```

A specific executable can be chosen by the -x option,

```
TTEST -x /usr/local/TURBOMOLE/bin/i786-pc-linux-gnu/dscf.
```

If a test output is already present, e.g., in the TESTDIR directory, you may wish to check the results. This is accomplished by calling TTEST in check mode,

```
TTEST --check TESTDIR,
```

which compares the results in TESTDIR with the reference and writes the results to the CHECKPROTOKOLL file in the test directory.

Testing parts of the TURBOTEST directory structure or the entire test suite at once is performed by calling the TTEST script from the appropriate place. The test script works recursively, executing all test examples underneath its starting directory. This requires that the test examples be arranged in a TURBOTEST-like directory structure,

```
progname/short|long/example (e.g., dscf/short/H2O.SCF.E1),
```

and the TURBOTEST directory contain a DEFCRIT file with general test suite settings. If TTEST is started in the central TURBOTEST without any options, all available test examples are executed. By giving the list of module names (for full list, check TTEST --help) as argument to the script, the test can be restricted to these modules. The --short and --long options allow the user to select only the short or long test examples, respectively. Some examples of usage are given in the following table:

```
TTEST dscf called in the TURBOTEST directory, performs
    only the tests for DscF module.
TTEST called in the TURBOTEST/dscf directory, does
the same.
TTEST --long executes long examples for all modules.
TTEST ridft --short performs all short examples from the ridft
directory.
```

Recursive testing creates some additional files in the central TURBOTEST directory. The global protocol file TESTPROTOKOLL.sysname contains short result messages for
all test and a list of errors occurred. The list of failed tests is also written to the PROBLEMS.sysname file and can be rerun by calling the test script with the -r option,
TTEST -r PROBLEMS.i786-pc-linux-gnu.

The -r may also be useful to create any user-defined selection of test examples. The full list of available examples is obtained by the TTEST --list command.
Once you are done with testing, you may wish to clean up afterwards. To do it, use the --clean and --realclean options of the TTEST script. The difference between these two is that TTEST --clean deletes only the test directories and protocols that were created for the current computer architecture as returned by Sysname. In contrast, the TTEST --realclean wipes out all test directories and protocols that get in its way.

17.3 Taking the timings and benchmarking

Benchmarking differs from testing only in that program timings are computed and compared with reference timings. Calling the script as
TTEST --timings
performs the test, calculates the CPU and wall clock timings, and writes the raw results to the TESTTIMINGS.sysname.nodename file. Auxiliary scripts Tbtim and Tblist help to convert this data to a more readable form and produce summaries as $\mathrm{HT}_{\mathrm{E}} \mathrm{X}$ tables. The Tbtim script creates a summary of benchmark results for a given computer platform from the original timings file. Tblist produces benchmark comparisons of different platforms. The corresponding timings files must be provided as arguments to the Tblist script. For more details and options, see TBTIM --help and TBLIST --help.

17.4 Modes and options of the TTEST script

The TTEST script knows several operation modes: "run", "check", "list", "clean", "realclean", and "validate", controlled by its options. The "run" mode is default and means that the test calculations are performed and the results are written to the TESTPROTOKOLL file. The "check" mode differs only in that the programs are not executed, but the existing program output is checked against the reference. The results of the check are written to the CHECKPROTOKOLL file. Calling the test script in the "list" mode simply lists the test examples that are currently available. This allows the user to save the full list to file, edit, and re-use it with the -r option. The "clean" and "realclean" options are for cleaning up the test directories and protocols. Finally, the "validate" mode is mainly of use for writing the CRIT files. It helps to verify the match patterns provided in the test criteria and shows if it extracts the
expected data for comparison with the reference. For every output file used for testing, the "validate" option produces a copy with an additional .val extension. The match strings evaluated for test criteria are highlighted in the output by <<<<< and >>>>> marks.

There is a lot of options controlling the behavior of TTESTTंesting specific versions of Turbomole modules is provided by loading path options, -1 for binaries, -1 s for scripts, and -x for a specific executable. For benchmarking, you need the --timings option to produce the timing summaries, and the --newref option to save the current program timings as the new reference. The module specifications and --short, --long, and -r options can be used for selecting the test examples. The more specialized options are summarized in the following table. Note that most of these options can also be set in the DEFCRIT file (see below).

Operation modes

| --help | Prints out the help message and exits. |
| :---: | :---: |
| -h | |
| -? | |
| --list | Lists the available test examples. |
| --clean | Deletes the test directories and summary files for the current architecture (given by Sysname, see Chapter 1.5). |
| --realclean | Deletes all test directories and protocols. |
| --check dir | Checks the correctness of an existing program test in the directory dir (default: TESTDIR.sysname). Useful if new criteria or new references are established. |
| --validate dir
 -val dir | Examines the output files in the directory dir (default: TESTDIR.sysname) and highlights the positions of the retrieved matches. |

Loading path and naming options

--loaddir
-l dir
--scriptdir dir
-ls dir
--testprog prog
-x $p r o g$
--dir dir
--critfile file
--defcritfile file

Loading path for the Turbomole binaries
(default: \$TURBODIR/bin/sysname).
Loading path for the TURBOMOLE scripts (default: \$TURBODIR/scripts).
Tests the given executable prog.

Name for the local test directory (default: TESTDIR.sysname).
Name for the local criteria file (default: CRIT).
Name for the test suite settings file
(default: DEFCRIT).

| --protfile file
 --output file | Name for the local protocol file (default: TESTPROTOKOLL). |
| :---: | :---: |
| --gprotfile file | Name for the global protocol file (default: TESTPROTOKOLL.sysname). |
| --checkfile file | Name for the check protocol file (default: CHECKPROTOKOLL). |
| --errfile file | Name for the local error output file (default: output.err). |
| --probfile file | Name for the failed tests list (default: PROBLEMS.sysname). |
| --timfile file | Name for the timings file (default: TIMINGS.sysname). |
| --valfile file | Name for the validation file for 'run' criteria (default: RUNCRIT.val). |
| Execution options | |
| $\begin{aligned} & \text {--short } \\ & \text {--long } \end{aligned}$ | Only short / long subdirectories of the test suite will be tested (default: --short --long). |
| --restart file
 -r file | The list of test examples for execution will be read in from file
 (default: PROBLEMS.sysname). |
| --newref string | Produces new reference timings and writes them to the CRIT file. A short description of the reference platform is provided by string. |
| --fileref | Produces new reference files. |
| --batchmode | Running in batch mode, no screen output. |
| --errorstop
 --noerrorstop | Stops / Does not stop after the first error. (default: --noerrorstop). |
| --timings
 --notimings | Writes / Does not write the timings on file for further processing. (default: --notimings). |
| $\begin{aligned} & \text {--runopts } \\ & -0 \end{aligned}$ | Sets the conditions under which the test is run (default: "sequential, parallel") |

Bibliography

[1] R. Ahlrichs; M. Bär; M. Häser; H. Horn; C. Kölmel. Electronic structure calculations on workstation computers: The program system Turbomole. Chem. Phys. Lett., 162(3), 165-169, (1989).
[2] A. Schäfer; H. Horn; R. Ahlrichs. Fully optimized contracted gaussian basis sets for atoms Li to Kr. J. Chem. Phys., 97(4), 2571-2577, (1992).
[3] A. Schäfer; C. Huber; R. Ahlrichs. Fully optimized contracted gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys., 100(8), 5829-5835, (1994).
[4] K. Eichkorn; F. Weigend; O. Treutler; R. Ahlrichs. Auxiliary basis sets for main row atoms and transition metals and their use to approximate coulomb potentials. Theor. Chem. Acc., 97(1-4), 119-124, (1997).
[5] F. Weigend; F. Furche; R. Ahlrichs. Gaussian basis sets of quadruple zeta valence quality for atoms H-Kr. J. Chem. Phys., 119(24), 12753-12762, (2003).
[6] F. Weigend; R. Ahlrichs. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn : Design and assessment of accuracy. Phys. Chem. Chem. Phys., 7(18), 3297-3305, (2005).
[7] A. K. Rappé; C. J. Casewit; K. S. Colwell; W. A. Goddard III; W. M. Skiff. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc., 114(25), 10024-10035, (1992).
[8] F. Weigend; M. Häser. RI-MP2: first derivatives and global consistency. Theor. Chem. Acc., 97(1-4), 331-340, (1997).
[9] F. Weigend; M. Häser; H. Patzelt; R. Ahlrichs. RI-MP2: Optimized auxiliary basis sets and demonstration of efficiency. Chem. Phys. Letters, 294(1-3), 143-152, (1998).
[10] C. Hättig; F. Weigend. CC2 excitation energy calculations on large molecules using the resolution of the identity approximation. J. Chem. Phys., 113(13), 5154-5161, (2000).
[11] C. Hättig; K. Hald. Implementation of RI-CC2 for triplet excitation energies with an application to trans-azobenzene. Phys. Chem. Chem. Phys., 4(11), 2111-2118, (2002).
[12] C. Hättig; A. Köhn; K. Hald. First-order properties for triplet excited states in the approximated coupled cluster model CC2 using an explicitly spin coupled basis. J. Chem. Phys., 116(13), 5401-5410, (2002).
[13] C. Hättig. Geometry optimizations with the coupled-cluster model CC2 using the resolution-of-the-identity approximation. J. Chem. Phys., 118(17), 77517761, (2003).
[14] R. Bauernschmitt; R. Ahlrichs. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett., 256(4-5), 454-464, (1996).
[15] R. Bauernschmitt; R. Ahlrichs. Stability analysis for solutions of the closed shell Kohn-Sham equation. J. Chem. Phys., 104(22), 9047-9052, (1996).
[16] F. Furche; R. Ahlrichs. Adiabatic time-dependent density functional methods for excited state properties. J. Chem. Phys., 117(16), 7433-7447, (2002).
[17] M. Kollwitz; J. Gauss. A direct implementation of the GIAO-MBPT(2) method for calculating NMR chemical shifts. Application to the naphthalenium and and anthracenium ions. Chem. Phys. Lett., 260(5-6), 639-646, (1996).
[18] C. van Wüllen. Shared-memory parallelization of the TURBOMOLE programs AOFORCE, ESCF, and EGRAD: How to quickly parallelize legacy code. J. Comp. Chem., (DOI 10.1002/jcc.21692), (2011).
[19] M. von Arnim; R. Ahlrichs. Geometry optimization in generalized natural internal coordinates. J. Chem. Phys., 111(20), 9183-9190, (1999).
[20] P. Pulay; G. Fogarasi; F. Pang; J. E. Boggs. Systematic ab initio gradient calculation of molecular geometries, force constants, and dipole moment derivatives. J. Am. Chem. Soc., 101(10), 2550-2560, (1979).
[21] M. Dolg; U. Wedig; H. Stoll; H. Preuß. Energy-adjusted ab initio pseudopotentials for the first row transition elements. J. Chem. Phys., 86(2), 866-872, (1986).
[22] C. C. J. Roothaan. Self-consistent field theory for open shells of electronic systems. Rev. Mod. Phys., 32(2), 179-185, (1960).
[23] R. Ahlrichs; F. Furche; S. Grimme. Comment on "Assessment of exchange correlation functionals". Chem. Phys. Lett., 325(1-3), 317-321, (2000).
[24] M. Sierka; A. Hogekamp; R. Ahlrichs. Fast evaluation of the coulomb potential for electron densities using multipole accelerated resolution of identity approximation. J. Chem. Phys., 118(20), 9136-9148, (2003).
[25] F. Weigend. A fully direct RI-HF algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency. Phys. Chem. Chem. Phys., 4(18), 4285-4291, (2002).
[26] R. Fletcher. Practical Methods of Optimization. Unconstrained Optimization. Band 1. Wiley: New York, 1980.
[27] T. Helgaker. Transition-state optimizations by trust-region image minimization. Chem. Phys. Lett., 182(5), 503-510, (1991).
[28] F. Jensen. Locating transition structures by mode following: A comparison of six methods on the Ar_{8} Lennard-Jones potential. J. Chem. Phys., 102(17), 6706-6718, (1995).
[29] P. Császár; P. Pulay. Geometry optimization by direct inversion in the iterative subspace. J. Mol. Struct., 114, 31-34, (1984).
[30] R. Fletcher. A new approach to variable metric algorithms. Comput. J., 13(3), 317-322, (1970).
[31] H. B. Schlegel. Optimization of equilibrium geometries and transition structures. J. Comput. Chem., 3(2), 214-218, (1982).
[32] H. B. Schlegel. Estimating the hessian for gradient-type geometry optimizations. Theor. Chim. Acta, 66(5), 333-340, (1984).
[33] M. Ehrig. Diplomarbeit. Master's thesis, Universität Karlsruhe, 1990.
[34] T. Koga; H. Kobayashi. Exponent optimization by uniform scaling technique. J. Chem. Phys., 82(3), 1437-1439, (1985).
[35] A. K. Rappé; W. A. Goddard III. Charge equilibration for molecular dynamics simulations. J. Phys. Chem., 95(8), 3358-3363, (1991).
[36] C. G. Broyden. The convergence of a class of double-rank minimization algorithms 1. General considerations. J. Inst. Math. Appl., 6(1), 76-90, (1970).
[37] D. Goldfarb. A family of variable-metric methods derived by variational means. Math. Comput., 24(109), 23-26, (1970).
[38] D. F. Shanno. Conditioning of quasi-newton methods for function minimization. Math. Comput., 24(111), 647-656, (1970).
[39] P. Pulay. Convergence acceleration of iterative sequences. the case of SCF iteration. Chem. Phys. Lett., 73(2), 393-398, (1980).
[40] M. P. Allen; D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press: Oxford, 1987.
[41] K. Eichkorn; O. Treutler; H. Öhm; M. Häser; R. Ahlrichs. Auxiliary basis sets to approximate coulomb potentials (erratum, 1995, 242, 283). Chem. Phys. Lett., 242(6), 652-660, (1995).
[42] J. A. Pople; R. K. Nesbet. Self-consistent orbitals for radicals. J. Chem. Phys., 22(3), 571-572, (1954).
[43] J. Čižek; J. Paldus. Stability conditions for solutions of Hartree-Fock equations for atomic and molecular systems. application to pi-electron model of cyclic plyenes. J. Chem. Phys., 47(10), 3976-3985, (1967).
[44] P. A. M. Dirac. Quantum mechanics of many-electron systems. Proc. Royal Soc. (London) A, 123(792), 714-733, (1929).
[45] J. C. Slater. A simplification of the Hartree-Fock method. Phys. Rev., 81(3), 385-390, (1951).
[46] S. Vosko; L. Wilk; M. Nusair. Accurate spin-dependent electron-liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58(8), 1200-1211, (1980).
[47] J. P. Perdew; Y. Wang. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B, 45(23), 13244-13249, (1992).
[48] A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behaviour. Phys. Rev. A, 38(6), 3098-3100, (1988).
[49] C. Lee; W. Yang; R. G. Parr. Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density. Phys. Rev. B, 37(2), 785-789, (1988).
[50] J. P. Perdew. Density-functional approximation for the correlation-energy of the inhomogenous electron gas. Phys. Rev. B, 33(12), 8822-8824, (1986).
[51] J. P. Perdew; K. Burke; M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 77(18), 3865-3868, (1996).
[52] J. Tao; J. P. Perdew; V. N. Staroverov; G. E. Scuseria. Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett., 91(14), 146401, (2003).
[53] A. D. Becke. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys., 98(2), 1372-1377, (1993).
[54] A. D. Becke. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 98(7), 5648-5652, (1993).
[55] J. P. Perdew; M. Ernzerhof; K. Burke. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys., 105(22), 9982-9985, (1996).
[56] V. N. Staroverov; G. E. Scuseria; J. Tao; J. P. Perdew. Comparative assessment of a new nonempirical density functional: Molecules and hydrogenbonded complexes. J. Chem. Phys., 119(23), 12129-12137, (2003).
[57] F. D. Sala; A. Görling. Efficient localized Hartree-Fock methods as effective exact-exchange Kohn-Sham methods for molecules. J. Chem. Phys., 115(13), 5718-5732, (2001).
[58] F. D. Sala; A. Görling. The asymptotic region of the Kohn-Sham exchange potential in molecules. J. Chem. Phys., 116(13), 5374-5388, (2002).
[59] S. Grimme. Semiempirical hybrid density functional with perturbative secondorder correlation. J. Chem. Phys., 124, 034108, (2006).
[60] A. Görling; M. Levy. Correlation-energy functional and its high-density limit obtained from a coupling-constant perturbation expansion. Phys. Rev. B, 47, 13105, (1993).
[61] A. Görling; M. Levy. Exact Kohn-Sham scheme based on perturbation theory. Phys. Rev. A, 50, 196, (1994).
[62] M. K. Armbruster; F. Weigend; C. van Wüllen; W. Klopper. Self-consistent treatment of spin-orbit interactions with efficient hartree-fock and density functional methods. Phys. Chem. Chem. Phys., 10, 1748-1756, (2008).
[63] M. K. Armbruster; W. Klopper; F. Weigend. Basis-set extensions for twocomponent spin-orbit treatments of heavy elements. Phys. Chem. Chem. Phys., 8, 4862-4865, (2006).
[64] M. Reiher; A. Wolf. Exact decoupling of the dirac hamiltonian. i. general theory. J. Chem. Phys., 121, 2037-2047, (2004).
[65] M. Reiher; A. Wolf. Exact decoupling of the dirac hamiltonian. ii. the generalized douglas-kroll-hess transformation up to arbitrary order. J. Chem. Phys., 121, 10945-10956, (2004).
[66] M. Reiher. Douglas-kroll-hess theory: a relativistic electrons-only theory for chemistry. Theor. Chem. Acc., 116, 241-252, (2006).
[67] A. Wolf; M. Reiher; B. Hess. The generalized douglas-kroll transformation. J. Chem. Phys., 117, 9215-9226, (2002).
[68] M. Sierka; A. Burow; J. Döbler; J. Sauer. Point defects in CeO_{2} and CaF_{2} investigated using periodic electrostatic embedded cluster method. Chem. Phys. Lett., Seite submitted, (2007).
[69] K. N. Kudin; G. E. Scuseria. A fast multipole method for periodic systems with arbitrary unit cell geometries. Chem. Phys. Lett., 283, 61-68, (1998).
[70] P. Ewald. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys., 64, 253-287, (1921).
[71] J. Hepburn; G. Scoles; R. Penco. A simple but reliable method for the prediction of intermolecular potentials. Chem. Phys. Lett., 36, 451-456, (1975).
[72] R. Ahlrichs; R. Penco; G. Scoles. Intermolecular forces in simple systems. Chem. Phys., 19, 119-130, (1977).
[73] S. Grimme. Accurate description of van der waals complexes by density functional theory including empirical corrections. J. Comput. Chem., 25(12), 1463-1473, (2004).
[74] S. Grimme. Semiempirical ggc-type density functional constructed with a long-range dispersion contribution. J. Comput. Chem., 27(15), 1787-1799, (2006).
[75] S. Grimme; J. Antony; S. Ehrlich; H. Krieg. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 132, 154104, (2010).
[76] F. Furche; D. Rappoport. Density functional methods for excited states: equilibrium structure and electronic spectra. In M. Olivucci, Ed., Computational Photochemistry, Band 16 von Computational and Theoretical Chemistry, Kapitel III. Elsevier, Amsterdam, 2005.
[77] F. Furche. On the density matrix based approach to time-dependent density functional theory. J. Chem. Phys., 114(14), 5982-5992, (2001).
[78] F. Furche; K. Burke. Time-dependent density functional theory in quantum chemistry. Annual Reports in Computational Chemistry, 1, 19-30, (2005).
[79] D. Rappoport; F. F. Excited states and photochemistry. In M. A. L. Marques; C. A. Ullrich; F. Nogueira; A. Rubio; K. Burke; E. K. U. Gross, Eds., TimeDependent Density Functional Theory, Kapitel 22. Springer, 2005.
[80] S. Grimme; F. Furche; R. Ahlrichs. An improved method for density functional calculations of the frecuency-dependent optical rotation. Chem. Phys. Lett., 361(3-4), 321-328, (2002).
[81] H. Weiss; R. Ahlrichs; M. Häser. A direct algorithm for self-consistent-field linear response theory and application to C_{60} : Excitation energies, oscillator strengths, and frequency-dependent polarizabilities. J. Chem. Phys., 99(2), 1262-1270, (1993).
[82] D. Rappoport; F. Furche. Lagrangian approach to molecular vibrational raman intensities using time-dependent hybrid density functional theory. J. Chem. Phys., 126(20), 201104, (2007).
[83] F. Furche. Dichtefunktionalmethoden für elektronisch angeregte Moleküle. Theorie-Implementierung-Anwendung. PhD thesis, Universität Karlsruhe, 2002.
[84] E. R. Davidson. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comp. Phys., 17(1), 87-94, (1975).
[85] F. Haase; R. Ahlrichs. Semidirect MP2 gradient evaluation on workstation computers: The MPGRAD program. J. Comp. Chem., 14(8), 907-912, (1993).
[86] F. Weigend; A. Köhn; C. Hättig. Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations. J. Chem. Phys., 116(8), 3175-3183, (2001).
[87] C. L. Janssen; I. M. B. Nielsen. New diagnostics for coupled-cluster and Møller-Plesset perturbation theory. Chem. Phys. Lett., 290(4-6), 423-430, (1998).
[88] I. M. B. Nielsen; C. L. Janssen. Double-substitution-based diagnostics for coupled-cluster and Møller-Plesset perturbation theory. Chem. Phys. Lett., 310(5-6), 568-576, (1999).
[89] F. R. Manby. Density fitting in second-order linear- r_{12} Møller-Plesset perturbation theory. J. Chem. Phys., 119(9), 4607-4613, (2003).
[90] E. F. Valeev. Improving on the resolution of the identity in linear r12 ab initio theories. Chem. Phys. Lett., 395(4-6), 190-195, (2004).
[91] K. E. Yousaf; K. A. Peterson. Optimized auxiliary basis sets for explicitly correlated methods. J. Chem. Phys., 129(18), 184108, (2008).
[92] K. A. Peterson; T. B. Adler; H.-J. Werner. Systematically convergent basis sets for explicitly correlated wavefunctions: The atoms h , he, $\mathrm{b}-\mathrm{ne}$, and al-ar. J. Chem. Phys., 128(8), 084102, (2008).
[93] W. Klopper; C. C. M. Samson. Explicitly correlated second-order MøllerPlesset methods with auxiliary basis sets. J. Chem. Phys., 116(15), 63976410, (2002).
[94] W. Klopper; W. Kutzelnigg. Møller-Plesset calculations taking care of the correlation cusp. Chem. Phys. Lett., 134(1), 17-22, (1987).
[95] S. Ten-no. Explicitly correlated second order perturbation theory: Introduction of a rational generator and numerical quadratures. J. Chem. Phys., 121(1), 117-129, (2004).
[96] S. F. Boys. Localized orbitals and localized adjustment functions. In P.-O. Löwdin, Ed., Quantum Theory of Atoms, Molecules and the Solid State, Seite 253. Academic Press, New York, 1966.
[97] J. Pipek; P. G. Mezey. A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions. J. Chem. Phys., 90(9), 4916-4926, (1989).
[98] D. P. Tew; W. Klopper. New correlation factors for explicitly correlated electronic wave functions. J. Chem. Phys., 123(7), 074101, (2005).
[99] W. Klopper; B. Ruscic; D. P. Tew; F. A. Bischoff; S. Wolfsegger. Atomization energies from coupled-cluster calculations augmented with explicitlycorrelated perturbation theory. Chem. Phys., 356(1-3), 14-24, (2009).
[100] F. A. Bischoff; S. Höfener; A. Glöß; W. Klopper. Explicitly correlated secondorder perturbation theory calculations on molecules containing heavy maingroup elements. Theor. Chem. Acc., 121(1), 11-19, (2008).
[101] S. Höfener; F. A. Bischoff; A. Glöß; W. Klopper. Slater-type geminals in explicitly-correlated perturbation theory: application to n-alkanols and analysis of errors and basis-set requirements. Phys. Chem. Chem. Phys., 10(23), 3390-3399, (2008).
[102] O. Christiansen; H. Koch; P. Jørgensen. The second-order approximate coupled cluster singles and doubles model CC2. Chem. Phys. Lett., 243(5-6), 409-418, (1995).
[103] W. Klopper; F. R. Manby; S. Ten-no; E. F. Valeev. R12 methods in explicitly correlated molecular electronic structure theory. Int. Rev. Phys. Chem., 25(3), 427-468, (2006).
[104] C. Hättig; A. Köhn. Transition moments and excited state first-order properties in the second-order coupled cluster model CC2 using the resolution of the identity approximation. J. Chem. Phys., 117(15), 6939-6951, (2002).
[105] T. Helgaker; P. Jørgensen; J. Olsen. Molecular Electronic-Structure Theory. Wiley: New York, 2000.
[106] O. Christiansen; P. Jørgensen; C. Hättig. Response functions from Fourier component variational perturbation theory applied to a time-averaged quasienergy. Int. J. Quantum Chem., 68(1), 1-52, (1998).
[107] C. Hättig; P. Jørgensen. Derivation of coupled cluster excited states response functions and multiphoton transition moments between two excited states as derivatives of variational functionals. J. Chem. Phys., 109(21), 9219-9236, (1998).
[108] A. Köhn; C. Hättig. Analytic gradients for excited states in the coupled-cluster model CC2 employing the resolution-of-the-identity approximation. J. Chem. Phys., 119(10), 5021-5036, (2003).
[109] C. Hättig; O. Christiansen; P. Jørgensen. Multiphoton transition moments and absorption cross section in coupled cluster response theory employing variational transition moment functionals. J. Chem. Phys., 108(20), 83318354, (1998).
[110] A. Hellweg; S. Grün; C. Hättig. Benchmarking the performance of spincomponent scaled cc2 in ground and electronically excited states. Phys. Chem. Chem. Phys., 10, 1159-1169, (2008).
[111] C. Hättig. Adv. Quant. Chem., 50, 37-60, (2005).
[112] S. Grimme; E. Ugorodina. Calculation of 0-0 excitation energies of organic molecules by CIS(D) quantum chemical methods. Chem. Phys., 305, 223-230, (2004).
[113] Y. M. Rhee; M. Head-Gordon. Scaled second-order perturbation corrections to configuration interaction singles: Efficient and reliable excitation energy methods. J. Phys. Chem. A, 111, 5314-5326, (2007).
[114] D. P. Tew; W. Klopper; C. Neiss; C. Hättig. Quintuple- ζ quality coupledcluster correlation energies with triple- ζ basis sets. Phys. Chem. Chem. Phys., 9, 1921-1930, (2007).
[115] H. Fliegl; C. Hättig; W. Klopper. Coupled-cluster theory with simplified linear$r_{1} 2$ corrections: The ccsd(r12) model. J. Chem. Phys., 122, 084107, (2005).
[116] T. Shiozaki; M. Kamiya; S. Hirata; E. F. Valeev. Explicitly correlated coupledcluster singles and doubles method based on complete diagrammatic equations. J. Chem. Phys., 129, 071101, (2008).
[117] A. Köhn; G. W. Richings; D. P. Tew. Implementation of the full explicitly correlated coupled-cluster singles and doubles model ccsd-f12 with optimally reduced auxiliary basis dependence. J. Chem. Phys., 129, 201103, (2008).
[118] C. Hättig; D. P. Tew; A. Köhn. Accurate and efficient approximations to explicitly correlated coupled-cluster singles and doubles, CCSD-F12. J. Chem. Phys., 132, 231102, (2010).
[119] T. B. Adler; G. Knizia; H.-J. Werner. J. Chem. Phys., 127, 221106, (2007).
[120] G. Knizia; T. B. Adler; H.-J. Werner. J. Chem. Phys., 130, 054104, (2009).
[121] M. Torheyden; E. F. Valeev. Phys. Chem. Chem. Phys., 10, 3410, (2008).
[122] E. F. Valeev; D. Crawford. J. Chem. Phys., 128, 244113, (2008).
[123] P. Deglmann; F. Furche; R. Ahlrichs. An efficient implementation of second analytical derivatives for density functional methods. Chem. Phys. Lett., 362(5-6), 511-518, (2002).
[124] P. Deglmann; F. Furche. Efficient characterization of stationary points on potential energy surfaces. J. Chem. Phys., 117(21), 9535-9538, (2002).
[125] M. Häser; R. Ahlrichs; H. P. Baron; P. Weis; H. Horn. Direct computation of second-order SCF properties of large molecules on workstation computers with an application to large carbon clusters. Theor. Chim. Acta, 83(5-6), 455-470, (1992).
[126] T. Ziegler; G. Schreckenbach. Calculation of NMR shielding tensors using gauge-including atomic orbitals and modern density functional theory. J. Phys. Chem., 99(2), 606-611, (1995).
[127] A. E. Reed; R. B. Weinstock; F. Weinhold. Natural population analysis. J. Chem. Phys., 83(2), 735-746, (1985).
[128] C. Ehrhardt; R. Ahlrichs. Population analysis based on occupation numbers. ii. relationship between shared electron numbers and bond energies and characterization of hypervalent contributions. Theor. Chim. Acta, 68(3), 231-245, (1985).
[129] F. Weigend; C. Schrodt. Atom-type assignment in molecule and clusters by pertubation theory - A complement to X-ray structure analysis. Chem. Eur. J., 11(12), 3559-3564, (2005).
[130] A. Klamt; G. Schüürmann. COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans.2, (5), 799-805, (1993).
[131] A. Klamt; V. Jonas. Treatment of the outlying charge in continuum solvation models. J. Chem. Phys., 105(22), 9972-9981, (1996).
[132] A. Klamt. Calculation of UV/Vis spectra in solution. J. Phys. Chem., 100(9), 3349-3353, (1996).
[133] F. J. Olivares del Valle; J. Tomasi. Electron correlation and solvation effects. I. Basic formulation and preliminary attempt to include the electron correlation in the quantum mechanical polarizable continuum model so as to study solvation phenomena. Chem. Phys., 150(2), 139-150, (1991).
[134] J. G. Ángyán. Rayleigh-Schrödinger perturbation theory for nonlinear Schrödinger equations with linear perturbation. Int. J. Quantum Chem., 47(6), 469-483, (1993).
[135] J. G. Ángyán. Choosing between alternative MP2 algorithms in the selfconsistent reaction field theory of solvent effects. Chem. Phys. Lett., 241(1-2), 51-56, (1995).
[136] R. Cammi; B. Mennucci; J. Tomasi. Second-order Møller-Plesset analytical derivatives for the polarizable continuum model using the relaxed density approach. J. Phys. Chem. A, 103(45), 9100-9108, (1999).
[137] G. Scalmani; M. J. Frisch; B. Mennucci; J. Tomasi; R. Cammi; V. Barone. Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model. J. Chem. Phys., 124(9), 094107, (2006).
[138] O. Treutler; R. Ahlrichs. Efficient molecular numerical integration schemes. J. Chem. Phys., 102(1), 346-354, (1995).
[139] A. D. Becke. A multicenter numerical integration scheme for polyatomic molecules. J. Chem. Phys., 88(4), 2547-2553, (1988).

Index

(non)-append mode, 60
*,43
-central, 201
-fanal, 182
-frznuclei, 200, 201
-relax, 93,113
.map, 183, 294
.sys.data, 50
\$2e-ints ‘_shell_statistics, 303, 304
\$2e-ints_shell_statistics, 303, 304
\$D2-diagnostic, 273
\$TURBODIR/uff/parms.in, 224
\$actual step, 204
\$alpha shells, 130, 148, 221, 242
\$anadens, 182
\$atoms, 61, 136, 139, 219, 220, 244, 256, 262
\$barrier, 298
\$basis, 61, 100, 104, 218, 281
\$beta shells, $130,148,221,242$
\$boys, 284
\$c1algorithm, 263
\$cabs, 155,167
\$cbas, $154,155,167,189,262,263,273$
\$cbasopt, 263
\$cc2_natocc, 273
\$cdspectrum, 149, 259, 264
\$cgrad, 273,274
\$closed shells, 63, 64, 130, 220, 234,
241, 242
\$constraints, 299
\$coord, 49, 51, 100, 103,105, 133, 135,
138, 200, 207, 218, $223,225,281$
\$coordinateupdate, 100, 275
dqmax, 275
interpolate, 275
statistics, 275
\$corrgrad, 280
\$cosmo, 250254
allocate_nps, 251
ampran, 251
cavity, 251
closed, 251
open, 251
disex, 251
epsilon, 251
nppa, 251
nspa, 251
phsran, 251
refind, 251
routf, 251
rsolv, 251
use_old_amat, 251
\$cosmo_atoms, 250,252
\$cosmo_isodens, 253
\$csconv, 301
\$csconvatom, 301
\$csmp2, 203,301
\$current, 296
\$denconv, $32,146,154,156,164,167$,
188, 195, 227, 258, 263
$\$ \mathrm{dft}, 31,129,145,198,227,242,245$, 248, 254, 257
batchsize, 231
functional, 227
debug, 228
dgrenze, 231
diffuse, 229
fgrenze, 231
fullshell, 231
functional, 242
gridordering, 232
gridsize, 228, 242
gridtype, 228
nkk, 228
nphi, 228
ntheta, 228
old_RbCs_xi, 229
qgrenze, 231
radsize, 229
reference, 230
rhostart, 230
rhostop, 230
sgrenze, 231
symblock1, 231
symblock2, 231
test-integ, 231, 245
weight derivatives, 232
\$dkhorder, 131, 248
\$dkhorder 2, 131
\$dkhparam, 131, 248
\$dkhparam 1, 131
\$dkhparam 2, 131
\$dkhparam 3, 131
\$dkhparam 4, 131
\$dkhparam 5, 131
\$drvopt, 78, 199, 254, 255
basis on, 104
\$drvtol, 78
\$ecp, 145, 218
\$egrad, 100, 104, 274, 280, 282
\$electrostatic field, 145, 232, 233
\$embed, 133, 134, 136, 137, 248, 250
cell, 250
charges, 250
cluster, 250
content, 250
epsilon, 250
lmaxmom, 250
periodic, 250
potval, 250
wsicl, 250
\$end, 49, 219
\$energy, 130, 150, 219, 266, 271
\$escfiterlimit, 260
\$esp_fit, 292
\$excitation, 181
\$excitations, 167, 168, 174, 179, 184, 185, 269, 272
bothsides, 269
conv, 269
exprop, 179, 269
irrep, 269
leftopt, 269
preopt, 269
spectrum, 184, 269
thrdiis, 269
tmexc, 185
xgrad, 269
\$exopt, 150, 260
\$fermi, 77, 232
hlcrt, 232
nue, 232
stop, 232
tmend, 232
tmfac, 232
tmstrt, 232
\$firstorder, 233
\$fldopt, 145, 232, 233
1st derivative, 233
2nd derivative, 233
edelt, 233
fields, 233
geofield, 233
\$forceapprox, 102 106, 219, 275, 278, 280, 281
format, 280
\$forceconv, 255,257
\$forceinit, 47, 278, 281
diag, 279
carthess, 279
default, 279
individual, 279
off, 103, 278
on, 47, 103, 106, 275, 278, 281
carthess, 47, 107, 281
diag, 106
\$forceiterlimit, 255, 257
\$forcestatic, 281
\$forceupdate, 103, 276, 281
ahlrichs, 276
indgeo, 276
maxgeo, 276
numgeo, 276
allow, 278
bfgs, 276
damping, 278
dfp, 276
dfp-bfgs, 276
diagonal, 278
ms, 276
offdamp, 278
offreset, 278
pulay, 277, 281
fail, 277
maxpul, 277
minpul, 277
modus, 277
numpul, 277
reseig, 278
scale, 278
schlegel, 276
thrbig, 278
threig, 278
\$freeze, 145, 154, 156, 165, 167, 189,
261263
\$gdiis, 130, 248
\$gdiishistory, 275
\$global, 100, 105, 279, 281
\$globgrad, 100, 105. 280
\$grad, 100, $103,105,207,219,266,271$ 280, 282
\$grad_send_dens, 304
\$grid, 91, 287
\$hOhessian, 97
\$hessian, 78, 100, 106, 107, 255, 256, 279
\$hessian (projected), 78, 281
\$incore, 41, 233
\$intdef, 49, 51, 102, 103, 199, 218, 274, 275, 279, 280
\$interconversion, 98,275
maxiter, 275
on, 102, 275, 276
qconv, 275
\$ironly, 256
\$isopts, 256
\$isosub, 256
\$jbas, 117, 219, 243
\$jkbas, 117, 155, 167, 244
\$ke_control, 297, 298, 300
\$kramers, 130, 248
\$laplace, 165,264
conv, 264
\$last MP2 energy change, 279
\$last SCF energy change, 279
\$last excitation energy change, 150
\$last step
relax, 218
\$1cg, 167, 189, 190, 268
\$les, 97, 198, 256 all, 257
\$lesiterlimit, 257
\$1hf, 246
\$localize, 206, 292, 294
mo, 292
sweeps, 292
thrcont, 292
\$lock off, 217
\$loewdin, 285
\$log, 296
\$log_history, 297, 298, 300
\$m-matrix, 106, 279
\$mao, 286
\$mao selection, 291
\$marij, 117, 244
extmax, 244
lmaxmom, 244
nbinmax, 244
precision, 244
thrmom, 244
wsindex, 244
\$maxcor, 40, 76, 154, 155, 167, 189, 194, 195, 198, 255, 260, 264
\$maximum norm of
basis set gradient, 282
cartesian gradient, 282
internal gradient, 282
\$md_action, 300, 301
\$md_status, 297, 299
\$mo output format, 234, 239
\$mo-diagram, 234
\$mointunit, 155, 156, 203, 262, 301
\$moments, 284,288
\$moprint, 234
\$mp2energy, 32, 154, 261, 262
\$mp2energy SCS, 261
\$mp2energy SCS pt=val1 ps=val2, 261
\$mp2occ, 158, 263
\$mp2pair, 262
\$mulliken, 285
\$mvd, 206, 288
\$natoms, 296
\$natural orbital
occupation, 219
\$natural orbital occupation file=natural xyz 295

294
\$natural orbitals, 219, 234
occupation, 234
\$natural orbitals file=natural, 294
\$newcoord, 197
\$nmr, 203
dft, 203
mp2, 203
rhf, 203
shielding constants, 203
\$nomw, 97, 256
\$noproj, 256
\$nosalc, 255
\$nprhessian, 256
\$nprvibrational normal modes, 256
\$nprvibrational spectrum, 256
\$nsteps, 296
\$numprocs, 302, 303
\$oldgrad, 282
\$open shells, 63, 64, 220, 241
\$operating system, 217
\$optimize, 98, 99, 199, 274, 276
basis, 99,274
logarithm, 274
scale, 274
cartesian, 99, 274
global, 99, 274
internal, 99, 102, 274, 279
redundant, 99, 274
\$paboon, 285
\$parallel_parameters, 304
\$parallel_platform, 38, 302
\$pardft, 303
\$path, 217
\$point_charges, 145, 234
\$points, 86, 87, 91, 284
\$pointval, 183, 207, 208, 293
dens, 294
fld, 209, 294
fmt, 294
cub, 295
map, 295
plt, 295
txt, 295
vec, 295

$$
x, \wedge y, 20
$$

geo, 211, 296
line, 296
plane, 296
point, 296
integrate, 293
lmo, 210, 294
mo, 209, 294
nao, 211
nmo, 294
pot, 209, 294
xс, 209,294
\$pop, 206, 289
atoms, 289
dos, 289
lall, 289
mo, 289
netto, 289
overlap, 289
thrpl, 289
\$pop nbo, 206,290
\$pop paboon, 206, 290
\$pople, 220
\$prediag, 235, 237
\$printlevel, 263,266
\$properties, 84,284
\$ramanonly, 256
\$redund_inp, 221
\$redundant, 103, 199, 274, 280
\$response, 271
conv, 271
fop, 271
gradient, 271
nosemicano, 271
nozpreopt, 271
semicano, 271
thrsemi, 271
zconv, 271
zpreopt, 271
\$response, 165, 167, 178, 181, 270, 272
\$restart, 237
\$restartd, 235, 237
\$ricc2, 156, 158, 162, 164, 167, 168, 171,
172, 174, 178, 181, 187, 189, 195,
264, 265, 271, 272
adc (2), 265
cc2, 265
ccs, 265
cis, 265
cis(d), 265
cisdinf, 265
conv, 265
d1diag, 265
fmtprop, 265
geoopt, 178, 265
gsonly, 265
hard_restart, 265
iprint, 265
lindep, 265
maxiter, 265
maxred, 265
mp2, 265
mxdiis, 265
nohard_restart, 265
norestart, 265
oconv, 265
restart, 265
scs, 265
sos, 265
\$ricore, 73, 116, 117, 145, 149, 198, 243,
244, 304
\$ricore_slave, 304
\$ridft, 145, 149, 243, 244
\$rij, 129, 243, 248
\$rik, 116, 129, 243, 244, 248
\$ripop, 244
\$rir12, 155, 159, 160, 163, 167, 189, 191.
267
ansatz, 267
cabs, 267
cabsingles, 267
ccsdapprox, 267
comaprox, 267
corrfac, 267
examp, 267
local, 267
pairenergy, 267
r12model, 267
ump2fixed, 267
\$rohf, 241
\$roothaan, 220, 241
\$rpaconv, 144, 259, 260
\$rpacor, 149, 259
\$rundimensions, 235
\$scf conv, 32, 75, 146, 236, 240, 258, 263
settings for
Aoforce, 198
Numforce, 198
\$scfdenapproxl, 233, 236
\$scfdiis, 235,237
\$scfdump, 234, 235, 237
\$scfinstab, 116, 144,260
ciss, 258
cist, 258
dynpol, 258
non-real, [258
polly, 258
rpas, 258
rpat, 258
singlet, 258
triplet, 258
ucis, 258
urpa, 258
\$scfintunit, 36, 41, 145, 235, 237, 238, 240, 263, 301
file, 238
size, 238
unit, 238
\$scfiterinfo, 237
\$scfiterlimit, 238
\$scfmo, 64, 219, 220, 234, 235, 237, 239, 242, 301
expanded, 239
file, 238
format, 239]
none, 63, 238
scfconv, 239
scfdump, 239
\$scfmo none, 63
\$scforbitalorder, 239
\$scforbitalshift, 239
automatic, 240
closedshell, 240
individual, 240
noautomatic, 240
\$scftol, 240, 263, 301
\$scratch
\$scratch files, 301, 303
\$scratch files, 240, 279, 303
\$seed, 297
\$sharedtmpdir, 186
\$soes, 145, 148 150, 259, 260
\$soghf, 129, 130, 207, 248
\$spectrum, 149, 259, 264
\$spinor, 130
\$start vector
generation, 148, 259
\$statistics, 238, 240, 241
dscf, 117, 218, 240
dscf parallel, 240, 304
grad parallel, 304
kora, 240
mpgrad, 156, 218, 240, 262
mpshift, 203
off, 218, 240
polly, 240
\$statpt, 95, 97, 283
bfgs, 97
hssfreq, 283
hssidiag, 283
itrvec, 96, 283
keeptmode, 283
powell, 97
radmax, 283
radmin, 283
threchange, 96
thrmax-displ, 96
thrmaxgrad, 96
thrrmsdispl, 96
thrrmsgrad, 96
tradius, 95,283
update, 283
\$sum
rules, 260
\$suspend off, 217
\$symmetry, 145, 219
\$thime, 115, 117, 145, 241, 263, 301
\$thize, 115, 117, 145, 203, 234, 241, 263, 301
\$title, 219, 297
\$tmpdir, 186, 262, 263
\$tplot, 158, 263
\$traloop, 155, 156, 203, 261, 301, 303
\$trand, 302
\$trast, 302
\$turbomole, 297
\$twoint, 202
\$uff, 108, 223
maxcycle, 108
\$uffgradient, 223, 225
\$uffhessian, 223, 225
\$ufftopology, 223,225
\$uhf, 221, 242
\$uhfmo_alpha, 148, 219, 238, 242
\$uhfmo_beta, 148, 219, 238, 242
\$userdefined bonds, 218
\$vdw_fit, 287
\$velocity gauge, 259
\&, 43
plt, 293
NumForce
-frznuclei, 200
-frznuclei
NumForce, 200
Actual, 24
actual step
dscf, 218
ADC(2)
RI-, 263
analysis of normal modes
internal coordinate, 199
Aoforce
keywords, 255
aoforce, 14, 23, 24, 33, 34, 39, 41, 76, 78, 83, 97, 100, 106, 142, 197, 200, 255, 280, 281
Aoforce2g98, 24
B-matrix, 51, 52
babel, 29
Bend, 24, 25
Boys localization, 292

Broken symmetry, 67
bsse_out, 114
bsseenergy, 112
Cbasopt, 24
cc1sd...,182
cc1td-, 182
cc1td-cc2-gs-1a1-001, 182
cc1td-cc2-xs-3a2-001, 182
CC2, 22
RI-, 263
CCLO--m-ss-xxx, 178
CCLEO-s--m-xxx, 174
CCMEO-s--m-xxx, 184
CCNEO-s--m-xxx, 185
CCNLO-s--m-xxx, 179
CCREO-s--m-xxx, 174
CCS
RI-, 263
Cgnce, 25
CIS, 22
RI-, 263
CIS(D), 22
RI-, 263
conjugate gradients, 98
control, 22, 24, 29, 31, 43, 45, 60, 63,
70, 96, 158, 159, 181, 186, 205
converged, 94
coord, 29
coordinates
frozen, 200
cos, 187, 267
Cosmo
keywords, 250
cosmo, 25, 212, 214, 250, 254
Cosmoprep, 25,252
counterpoise calculation, 60
CP-corrections, 112
CPHF, 202
css, 187, 267
Define, 157
define, 22, 26, 29, 33, 43, 45, 47, 52, 55, 60, 64, 66, 68, 70, 73, 79, 82, 84, 87, 88, 90, 91, 95, 96, 102, 103, 105, 112, 113, 116, 117, 130, 145,

149, 155, 160, 162, 167, 183, 189,
199, 205, 211, 217, 218, 220, 238,
242, 244, 246, 258, 264, 275, 305
degrees of freedom, 51
dens, 182
DIIS, 98, 275
Dist, 25
dos_a+b, 289
dos_a-b, 289
dos_alpha, 289
dos_beta, 289
DscF
keywords, 227
Dscf, 243
dscf, 14, 22, 23, 28, 31] 36, 38, 41, 62,
63, 72, 94, 100, 111, 113, 115
119, 131, 132, 146, 156, 168, 181,
186, 190, 202, 205, 206, 208, 215,
218, 219, 235, 240, 245, 248, 250,
[253, 254, 287, 288, 301, 303, 304
dummy center, 49
edens, 182
Egrad
keywords, 260
egrad, 14, 23, 24, 32, 33, 35, 39, 41, 94,
100, 141, 142, $144,146,149,150$.
182, 200, 205, 206, 208, 260, 280,
287. 288

Eiger, 25, 210, 292
energy, 107
environment
variable
OMP_NUM_THREADS, 39
PARA_ARCH, 39
PARNODES, 39
EscF
keywords, 257
escf, 14, 23, 32, 34, 39, 41, 75, 132, 141,
144, 150, 215, 248, 254, 257, 260
Evalgrad, 25
extended Hückel calculation, 62
Freeh, 33, 198
freeh, 24
Frog
keywords, 296
frog, 23, 33, 94, 111, 296, 299, 300
frozen coordinates, 200
geometries
excited states, 178
ground state, 176
geometry
manipulation of, 56
Grad
keywords, 254
grad, 22, 23, 31, 33, 36, 38, 72, 78, 94, $100,103,104,111,113,115,119$,
$132,150,178,186,248,250,254$,
260, 280, 282, 303, 304
grad_out, 114
gradient, 181
gradients
excited states, 178
ground state, 176
Hcore, 25
Infrared Spectra, 197
intense, 24, 200
internal coordinates
linear combination of, 55
manual definition of, 54
types of, 54
intersections
conical, 173
jmol, 25
job.<cycle>, 94
job.last, 94
job.start, 94
jobbsse, 50, 112114
Jobex, 25
Jobex, 117
jobex, 24, 27, 30, 45, 73, 76, 93, 94, 96,
97, 107, 112, 142, 150, 168, 266,
281, 304
-c, 93,113
-dscf, 93
-energy, 93,113
-ex, 93
-gcart, 93, 113
-grad, 93
-gradient, 113
-keep, 93
$-1,93,113$
-level, 93,113
-ls, 93, 113
-md, 93
-mdfile, 93
-mdmaster, 93
-mem, 113
-opt, 113
-relax, 93, 113
-ri, 93, 113
-rijk, 93
-setup, 113
-statpt, 93
-trans, 93
-trimer, 113
Kdg, 25
kinetic energy, 300
lalp, 292
lbet, 292
Leapfrog Verlet algorithm, 111, 296
Lhfprep, 25,245
lhfprep, 245
lmo, 292
Log2egy, 25
$\log 2 \mathrm{x}, 25$
LT-SOS-RI-MP2, 41, 163
mdens, 182
mdlog, 111
mdmaster, 296
mdmaster, 111
Mdprep, 25, 111, 296, 297
mdprep, 296
menu
atomic attributes, 56, 59
general, 70, 71
geometry main, 46
geometry menu, 48
internal coordinate, 51, 52
occupation number assignment, 64,
65
start vectors, 61, 62
molecular dynamics, 110,296
molecular orbitals
binary format, 62
Moloch
keywords, 284
moloch, 84, 87, 88, 90, 91, 205, 284
MP2
RI-, 263
Mp2prep, 25, 31, 32, 156
mp2prep, 156
MpGRAD
keywords, 260
mpgrad, 14, 22, 23, 32, 35, 76, 94, 100,
$104,113,152,154,156,158,181$,
204, 206, 208, 218, 227, 240, 250,
253, 261, 280, 288, 303, 304
MPSHIFT
keywords, 301
mpshift, 14, 24, 30, 32, 33, 202, 204, 302
multi-core, 39
no weight derivatives, 257
not. converged, 94,114
NumForce, 24, 33, 35, 168, 180, 181, 200,
254
Numforce, 23, 25, 142, 150, 168, 197, 198, 254

OMP_NUM_THREADS, 39
OpenMP, 39
Outp, 25
PARA_ARCH, 39
parallelization
multi-core, 39
OpenMP, 39
SMP, 39
threads, 39
parms.in, 224
PARNODES, 39
PEECM
keywords, 248
plotting data
keywords, 288
population analysis, 289
properties
excited states, 178
ground state, 176
q, 43
quasi-Newton, 98
Raman, 24, 26, 33, 200
Raman spectra, 200
RDGRAD
keywords, 254
Rdgrad, 243
rdgrad, 22, 23, 31, 33, $35,38,41,73,94$, $100,103,113,115,117,119,132$. 150, 178, 248, 250, 254, 303, 304
Relax
keywords, 274
relax, $14,23,24,33,47,52,79,81,93$, 94, $98,100,102,103,105107$, $\begin{array}{ll}112 & 114,274,275, \\ 282 & 278,279,281,\end{array}$
restart.cc, 265
RI-ADC(2), 263
RI-CC2, 22, 263 keywords, 263
RI-CCS, 263
RI-CIS, 22, 263
RI-CIS(D), 22, 263
RI-MP2, 263
RI-MP2-F12, 41
Ricc2
keywords, 263

ricc2, 13, 14, 22, 24, 32, 41, 58, 59, 76, | 152 | 160, | 163, | 166 |
| :---: | :---: | :---: | :---: | 175,178,180 .

$184,186,188,190,192,205,208$, 263, 264, 272, 280
RIDFT
keywords, 227
Ridft, 243
ridft, $14,22,23,30,36,38,41,63,73$,
74, 94, 113, 115, 117, 119, 129,
$132,146,155,168,181,183,190$,
$202,205,206,208,210,215,219$,
$243,244,248,250,254,287,289$, 303, 304
Rimp2
keywords, 260
rimp2, 14, 22, 23, $32,33,58,59, ~ 76, ~ 94$, 100, $113,152,155,157,158,166$,

$$
\begin{aligned}
& \text { 205, 206, 208, 261, 262, 265, 280, } \\
& \hline 287, ~ 288 \\
& \hline
\end{aligned}
$$

Rimp2prep, 31, 32, 155, 262, 264,
Roothaan parameters, 67
Screwer, 26
screwer, 98
scs, 162, 187, 267
SCS-MP2, 187
Sdg, 26
Simulated Annealing, 300
SMP, 39
sos, 187
SOS-MP2, 187
SOS-RI-MP2, 41
fourth-order scaling, 163
spectra
Raman, 200
spin
flipping spins on atoms, 64
Stati, 26, 117
Statpt
keywords, 282
statpt, [23, 33, 74, 93, 95, 97, 112, 114
steepest descent, 98
STOP, 94
stop, 94
structure library, 49
structure optimization, 93
substitution, 49
Sysname, 26, 27, 327, 329
sysname, 27, 28
T2x, 26
t2x, 207
Tblist, 26, 329
Tbtim, 26, 329
temperature, 300
time, 111, 296
timestep, 296
Tm2aomix, 26
Tm2molden, 26
tm2molden, 207
Tors, 25, 26
transformation
Laplace, 163

TTEST, 327 , 330
TURBOMOLE, 11, 13, $15,18,12,24,31,37$,
[39, 43, 45, 48, 59, 60, 62, 70, 71,
93, 96, 98, 103, 112, 122, 132,
136, 139, 152, 153, 157, 170, 197,
200, 207, 217, 235, 238, 239, 243,
248, 252, 253, 286, 297, 303, 305
Turbomole
installation, 27
modules, 22
quotation of, 13
tools, 24
Turbotest, 28
twoint, 30, 36, 37
UfF
keywords, 223
uff, 22, 47, 96, 97, 107, 108, 223, 224
uffgradient, 108
uffhessian0-0,108
ufftopology, 108, 224, 225, 227
nxtn12, 224
Uhfuse, 26
vector
function, 171
velocity, 300
vibration, 197
Vibrational Frequencies, 197
wave function analysis
keywords, 288
X2t, 26
x2t, 29, 45
xxx.map, 181

[^0]: *Provided that it is not an unrestricted open shell run. In this case the wavefunctions will not be spin eigenfunctions and multiplicities are not well defined.

[^1]: *Note that for the explicitely correlated CCSD variants the explicitely-correlated double excitations are neglected for the calculation of the triples corrections.

[^2]: ${ }^{\dagger}$ For other avaible approximation and the corresponding input options see Sec. 15.2 .13

[^3]: *P.Pulay; Chem.Phys.Lett., 73, 393 (1980), P.Pulay; J.Comput.Chem., 4, 556 (1982)

[^4]: ${ }^{\dagger}$ C. C. J. Roothaan: Rev. Mod. Phys. 32 (1960) 179.

