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Abstract

Two linear scaling schemes for the search of stationary points on the nuclear potential energy surface have been

developed and implemented for density functional theory programs using plane waves: a geometry optimizer based on

the limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) method and a linear scaling method for transition-

state search based on the microiterative scheme using the partitioned rational function optimizer (P-RFO) and L-

BFGS. These optimizers are written with parallelized execution in mind. It is shown that the electronic wavefunction

does not need to be fully optimized in the earlier stages of geometry optimization. The reasons for the robustness and

good performance of the proposed schemes are identified. Test calculations are presented that use our implementation

in the CPMD code.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Direct wavefunction optimization subject to

orthogonality constraints [1,2] in density func-

tional theory (DFT) is a very efficient alternative

to the diagonalization of the Kohn–Sham (KS)

Hamiltonian for total energy calculations or opti-

mizations of nuclear geometries. It can be used

particularly easily (and is routinely used) with

programs employing the Car–Parrinello (CP)

scheme [3] for ab initio molecular dynamics (MD)

simulations using DFT owing to the availability of

not only the forces acting on the nuclei, �oEtot=
oXa, but also those acting on the KS orbitals,

�dEtot=dw�
j . Setting the kinetic energy of the CP
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Lagrangean to zero corresponds to this class

of schemes for direct wavefunction optimization

subject to orthogonality constraints. These schemes

are especially efficient and robust if the direct

inversion in iterative subspace (DIIS) extrapola-
tion method [4,5] is used.

Such a wavefunction optimization scheme for

DFT is not only particularly efficient, but also

the CPU and memory requirements scale much

better with the system size than they do in other

approaches because the costly diagonalization of

the KS matrix is replaced by an optimization of

the wavefunction with respect to the KS total
energy. The resulting ground-state electron-density

distribution as a function of the nuclear coordi-

nates defines a potential energy surface (PES),

which in turn can be used for geometry optimiza-

tion.

The family of iterative second-order optimizers

based on the Newton–Raphson (NR) step (see e.g.

[6]), has been very successful in finding station-
ary points on such potential energy surfaces (PES)

in few iterations. The required inverse of the Hes-

sian matrix is either directly calculated or approx-

imated using the gradients of the preceding

iterations.

The program CPMD [7–9] is a very well opti-

mized and parallelized DFT code using a plane-

wave basis, pseudopotentials for core electrons,
and also offering direct wavefunction optimization

and the CP scheme for ab initio MD. For large but

tractable systems, DFT codes using plane waves

typically spend most of the CPU time required for

the calculation of the electronic interactions in fast

Fourier Transform (FFT) routines, scaling as

M � N logN with the number of plane waves N and
the number of KS states M , and in the calculation
of the non-local part of pseudopotentials, scaling

with a very low prefactor as M2N with system size.
Moreover, the model for the distribution of data

chosen in CPMD keeps the inter-process commu-

nication overhead low in the case of parallelized

execution. However, the geometry optimization

itself increasingly becomes a bottleneck for the

reasons explained below.
Three flaws still need to be addressed so that the

algorithms most commonly used for geometry

optimization in DFT programs using plane waves

become practical for systems containing more than

a few hundred atoms. First, a search for transition

states (TS) is only possible if the Hessian matrix of

the starting geometry has exactly one negative

eigenvalue, and the costs for the diagonalization of
the full Hessian increase with the system size

cubed. Second, especially the NR algorithms

converging in the fewest cycles often need to be

restarted manually after a not a priori predictable

number of cycles to achieve good performance or

even to converge. Third, the CPU costs for the

geometry optimization itself become considerable

for systems containing more than a few hundred
atoms. As most of the CPU time is usually spent

calculating the interactions between electrons, the

CPMD program does the manipulations of the

ionic coordinates on one processor only. With

growing speed of processors and communication

between processors and therefore larger tractable

systems, the routines for geometry optimization

have become a bottleneck. In principle, this bot-
tleneck could be removed by parallelizing the ge-

ometry optimization routines, but the two other

problems would remain unaddressed, and such a

parallelized geometry optimization scheme would

not be portable between different DFT programs.

Recently, an implicit NR optimization method

[10] has been developed for DFT programs using

plane waves. It employs density functional per-
turbation theory to approximate the effect of the

Hessian on a given atomic displacement, and in-

verts the Hessian using a conjugate gradient

method. This method has been successfully applied

to a number of molecules, has been shown to work

more reliably than the previous optimizers, and

can be extended to TS search. However, for the

optimization of the linear response wavefunction,
considerable additional effort is required.

In this paper, we chose an alternative approach

and implemented the algorithms for linear scaling

geometry optimization and TS search described in

[11,12], optimized for best performance and reli-

ability with a wavefunction determined using

direct wavefunction optimization. As the infor-

mation about the Hessian is derived from the
history of the optimization rather than from a

linear response wavefunction, these optimization

schemes also allow geometry optimization and TS
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search with a mixed quantum mechanics/molecu-

lar mechanics (QM/MM) Hamiltonian.

2. Methods

The algorithms for linear scaling geometry op-

timization and TS search presented in [11] have

been optimized for the specific requirements of

DFT calculations using plane waves and imple-

mented in the framework of the CPMD code [9].

The theory, especially for Sections 2.1 and 2.2, is

given in that article and the references therein.
Here, we merely summarize the methods briefly

and provide the specific details for the plane-wave

DFT implementation. The geometry optimizer

presented in [11] can perform the optimizations in

both Cartesian and hybrid delocalized internal

coordinates. Because the benefit of using delocal-

ized internal coordinates is smaller for many sys-

tems typically treated with a plane-wave code,
such coordinates are not yet implemented here.

Hence, Cartesian coordinates are used throughout

this paper.

2.1. Geometry optimization

For linear scaling geometry optimization, the

limited-memory Broyden–Fletcher–Goldfarb–
Shanno (L-BFGS) scheme [13,14] has been im-

plemented. Instead of calculating, updating, and

inverting the Hessian matrix, the effect of the in-

verse Hessian applied to a gradient is extrapolated

from a limited number nr of previous geometry
steps and gradients. If the initial Hessian is diag-

onal and the number of steps is smaller than nr, the
L-BFGS step is equivalent to the NR step with a
Hessian matrix approximated by the BFGS for-

mula [13]. Note that only values smaller than the

number of nuclear degrees of freedom are mean-

ingful for nr, and that with a fixed nr, the algorithm
scales linearly with system size, both in terms of

CPU and memory requirements.

The trust radius algorithm in [11,15] based on

the Wolfe conditions for sufficient decrease and
curvature (see e.g. Ref. [6]) has been implemented

with a few changes for best performance using

DFT direct wavefunction optimization schemes.

The maximum trust radius Tmax and initial value
Tini are set to 0.5 atomic units. If a step with a trust
radius below Tmin

1 still does not decrease the en-

ergy, the geometry optimization (both trust radius

and L-BFGS history) is reset. This could occur if
wavefunctions of the previous steps have not been

accurate enough, if the harmonic approximation

was not appropriate for the part of the PES sear-

ched, or if the geometry is very close to a sta-

tionary point. If the subsequent step will be even

smaller (< Tend
1), a stationary point must be very

close because the search direction corresponds to

the gradient, and the optimization is stopped.
A critical feature of this trust radius algorithm

is that geometry steps can be rejected. If a geom-

etry step is rejected, the initial guess of the elec-

tronic wavefunction is taken from the result of the

last successful step rather than from the most re-

cent one. 2

For comparison, a line-search scheme has been

implemented, working together with any external
line-search algorithm with a sufficient decrease cri-

terion. For consistency reasons, the initial guess of

the wavefunction must be the same for all line-

search cycles for the same search direction. The

search in one direction is stopped if eithermore than

nls
1 cycles would be required to satisfy the sufficient

decrease criterion, or if the predicted step or its

smallest deviation from any other attempted step is
smaller than Tmin.

1 In this case, the step length that

so far has yielded the lowest energy is taken.

2.2. Transition-state search

The partitioned rational function optimizer [16]

(P-RFO) is widely used for TS searches. It maxi-

mizes the energy in the direction of one eigenmode
of the Hessian while minimizing it in all other di-

rections. Unlike the NR or rational function

(RFO) optimizers, there are no restrictions in the

choice of the mode along which the energy is

1 Reasonable values are: Tmax ¼ Tini ¼ 0:5 Bohr, Tmin ¼ 10�5
Bohr, Tend ¼ 10�7 Bohr, nls ¼ 4.

2 The optimizer only schedules the old wavefunction to be

restored because geometry optimization is done on one

processor but the wavefunction can be distributed to overcome

memory limitations and for computational efficiency.
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maximized, specifically, any eigenvalue may be

negative or positive, and the optimization will

quite likely terminate in a stationary point with

exactly one negative eigenvalue which belongs to

the mode to be maximized. This makes the P-RFO
algorithm particularly suitable for mode following.

There is, however, a severe drawback it shares with

all algorithms acting in the eigenspace of the

Hessian: the effort for the diagonalization of the

Hessian scales with the system size cubed, and

the calculation of the full Hessian is very costly.

The linear-scaling microiterative TS search al-

gorithm has been described in [11,12]. The system
is split into a small reaction core and a large envi-

ronment, which is relaxed to a very small gradient,

max
a�env

oEtot

oXa

����
����6 Fmax;env; ð1Þ

before each step within the reaction core towards

the TS. This variational separation minimizes the

interdependence between core and environment.

Before the first P-RFO step in the reaction core
(after the first relaxation of the environment with

fixed core), the finite-difference Hessian matrix of

the core degrees of freedom is calculated,

Hab ¼ 1

4eh

oEtot

oXa

����
Xþeheb

"
� oEtot

oXa

����
X�eheb

þ oEtot

oXb

����
Xþehea

� oEtot

oXb

����
X�ehea

#
; ð2Þ

for which a finite-difference displacement of eh of
0.005 atomic units along the unit vectors ea turned

out to be a useful compromise between accuracy

and required number of wavefunction optimiza-

tion cycles. Such a small displacement is possible
because the initial guess of the wavefunction can

be taken from the wavefunction optimized at ge-

ometry X rather than from the one at the corre-

sponding preceding geometry. We will call this

matrix the partial Hessian. If necessary, it can be

periodically recalculated. Note that neither trans-

lational nor rotational degrees of freedom are

projected out of this Hessian, because, due to the
environment, the core system is no longer invari-

ant under these transformations.

If the current partial Hessian has been calcu-

lated for a previous P-RFO step, it is updated

using the Powell formula [17] from the last partial

Hessian, the last P-RFO step, and from the dif-

ference between the current gradient (after the last
step with relaxed environment) and the gradient

before the last P-RFO step. This update with re-

laxed environment is consistent with the energy

and gradient of the core, the environment being

subject to constraint (1), but it is not fully con-

sistent with the initial partial Hessian (2) which is

calculated for the relaxed geometry X but using

unrelaxed trial moves ehea. However, this ap-
proach works well in practice, and saves many

cycles during the costly calculation of the initial

partial Hessian.

Unlike for geometry optimization, the partial

Hessian is not required to be positive definite, and

the trust radius algorithm in Section 2.1 cannot be

applied. Therefore, the algorithms for both step

acceptance and dynamic trust radius are based on
energy prediction and Hessian mode overlap

[11,12] for the P-RFO step.

Assuming moderate couplings between the re-

action core and its environment, the partial Hes-

sian obtained from microiterative TS search can be

used for a vibrational analysis of the subsystem of

interest. Therefore, a block-diagonal Hessian of

the full system, consisting of the partial Hessian
and either a unit matrix or a matrix constructed

using empirical parametrizations such as DISCO

[18] or Schlegel [19], is built and diagonalized.

2.3. Adaptive tolerance

Many DFT programs apply the same criteria

for the convergence (self-consistency) of the elec-
tronic wavefunction throughout a geometry opti-

mization. We address two problems associated

with this.

First, these criteria cause unnecessary compu-

tational expenses. In order to obtain forces on the

nuclei that are accurate enough for the final stages

of the optimization, relatively tight criteria must

be applied for the wavefunction. This leads to
unnecessarily accurate gradients at the beginning

of the optimization and thus to excessive com-

putational effort. For the direct wavefunction
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optimization schemes, such a wavefunction con-

vergence criterion for the geometry optimization

step s is

gmax;s ¼ max
i;G

jgi;sðGÞj6 gmax; ð3Þ

gi;sðGÞ ¼ hGjĤHKS
s ji; si �

Xocc
j

hGjj; sihj; sjĤHKS
s ji; si;

ð4Þ
where ĤHKS

s is the KS operator of geometry step s,
hGji; si is the expansion coefficient of KS state i of
step s to plane wave G, and gmax is the criterion for
the wavefunction gradient. In Eq. (4), ĤHKS

s jii is a
convenient expression for the gradient of the total

KS energy with respect to state jii. Eq. (3) is now
replaced by the gradient adaptive tolerance crite-
rion,

gmax;s 6 maxðgmax; cgr;ad �min
s0<s

Fmax;s0 Þ; ð5Þ

Fmax;s0 ¼ max
a

oEtots0

oXa

����
����; ð6Þ

where Etot is the KS energy, Xa are the nuclear co-

ordinates, and cgr;ad is the adaptive gradient toler-
ance criterion. For good performance, taking the

minimum over all previous steps s0 in Eq. (5) turned
out to be very important to ensure consistency

because the maximum component of the gradient

does not decrease monotonically. Criterion (5) is

most important at the beginning of an optimization.

Second, proper assessment of the quality of an

optimization step by the progress of the target
function of the optimization, in our case the KS

energy Etot, helps to improve both the stability and
the performance of the optimizer. Therefore, the

absolute difference between the KS energies of two

wavefunction optimization cycles w and w� 1 at
geometry Xa;s must be much smaller than the

change between the two geometry optimization

steps s� 1 and s� 2,

jEtots;w � Etots;w�1j6 max DEmin; cen;ad � jEtots�1
�

� Etots�2j
�

if s > 1: ð7Þ

The constant cen;ad is the energy adaptive tolerance
criterion, and the threshold DEmin helps bridging
geometry steps with very small effect.

For the linear scaling optimizers, which can

reject steps, only the geometries resulting from

accepted steps are considered for Eqs. (5) and (7).

Note that, if applied, the adaptive energy criterion

Eq. (7) needs to be satisfied together with either
Eq. (3) or (5). Reasonable values for parameters

cgr;ad, cen;ad, and DEmin turned out to be 0.02, 0.05,
and 10�7 hartrees, respectively. The usual toler-

ance of 10�5 atomic units is suggested for gmax.
The microiterative optimization scheme re-

quires special care with adaptive tolerance criteria

of the electronic wavefunction. For relaxation of

the environment, both the gradient and the energy
adaptive tolerance criteria can be applied, but

only the force components acting on the envi-

ronment degrees of freedom are considered for

Eq. (6). During the calculation of the partial

Hessian and the P-RFO steps, the gradient

adaptive tolerance criterion Eq. (5) is not appli-

cable and replaced by the standard criterion Eq.

(3) for the wavefunction optimization, but the
adaptive energy tolerance criterion Eq. (7), using

the energy difference of the last accepted optimi-

zation step within the environment, was able to

reduce the number of required P-RFO steps con-

siderably. Note that this energy difference is usu-

ally very small and ensures a very accurate

wavefunction for the critical steps in the reaction

core.

2.4. Test calculations

All calculations were performed using a modi-

fied version of CPMD [9]. Unless mentioned, the

convergence criteria for the gradient of the ions

and the wavefunction were 10�4 and 10�5 atomic

units, respectively, and the density cutoff for the
calculation of the gradient corrections was 10�5

atomic units. Test systems were the Diels–Alder

reaction between ethylene and butadiene, and

three silicon clusters.

For the Diels–Alder test system, the Becke88

[20]/Perdew86 [21] exchange-correlation functional

(BP) has been used. A cubic cell having an edge of

28.3 Bohr has been used with a 40-Rydberg cutoff
for the plane-wave basis. The reaction core for the

TS search consisted of the four carbon atoms be-

tween which r bonds are formed.
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The three clusters contained 307, 513, and 747

silicon atoms, respectively, and the valences at the

edges were saturated with hydrogen. The clusters

were geometry optimized using the Perdew–

Burke–Enzerhof [22,23] exchange-correlation
functional (PBE) and cells of 59-, 68-, and 74-Bohr

edge, respectively, with a cutoff of 10 Rydberg for

the plane-wave basis.

3. Results

3.1. Geometry optimization

Fig. 1 and Table 1 summarize the effects of

several optimization parameters on the geometry

optimization performance in a relatively small test

system, the Diels–Alder complex of ethylene and

butadiene.

Fig. 1 compares the linear scaling geometry

optimizer with some algorithms implemented in
CPMD [9].

All currently used geometry optimizers were

outperformed by the linear scaling optimizer in all

cases. Both second-order optimizers with BFGS

update of the Hessian performed well initially,

but they took a wrong route after an overshoot

due to a missing criterion for step rejection and to

a fixed rather than a dynamically adjusted trust
radius. Whereas DIIS extrapolation of the nu-

clear displacements was unable to recover from

the wrong route, the NR optimizer recovered

after some time. Conjugate gradient optimization

was successful, too. Its implementation in CPMD

uses a line-search algorithm. Consequently, no

wrong route was taken, and the spikes typical for

line search are observable in Fig. 1, too. As ex-
pected, the slope of the conjugate gradient opti-

mizer is smaller than those of the second-order

methods.

Fig. 1 also compares the L-BFGS optimization

algorithms with trust radius and line search to

each other. Initially, line search is able to reduce

the number of geometry steps required to reach a

given value for the total energy, as to be expected.
However, the number of energy and gradient

evaluations is not much reduced because the larger

geometry steps require more cycles for the wave-

function to converge. In the later stages of the
optimization, the benefits from the optimum step

lengths using line search are more than compen-

sated by the additional effort to find them. The

small spikes stem from rejected attempts to take

too large a step when searching.

The trends in Table 1 are consistent with Fig.

1. Geometry optimization to the products rep-

resents an ‘‘easy’’ problem, whereas optimization

Fig. 1. Geometry optimization of the Diels–Alder complex of

ethylene and butadiene to the products using the BP exchange-

correlation functional [20,21]. The total energy is shown as

function of the number of geometry steps performed (left

column) and as function of the number of energy/gradient

evaluations (right column). The optimization started at the

AM1 TS of the reaction. The initial maximum component and

norm of the energy gradient on ions were 3.9� 10�2 and
1.3� 10�2 atomic units, respectively. Top row: optimization
using the linear scaling optimizer, with trust radius (solid line),

and with line search (dashed line). Bottom row: optimization

using the NR/BFGS (Newton–Raphson with approximate

Hessian (Broyden–Fletcher–Goldfarb–Shanno update), solid

line), the DIIS/BFGS (Direct inversion in iterative subspace

with approximate Hessian, dashed line), and the conjugate

gradient (short-dashed lines) optimizers. The energies are given

relative to the lowest value obtained ()40.016140 hartrees).
The dotted line indicates the lowest energy reached (adjusted

to zero). The crosses in the top-row panels indicate where the

optimization converged. The convergence criterion for the

maximum component of the gradient on ions was 10�4 atomic

units. The regular convergence criterion for the wavefunction

was 10�5 atomic units in all cases. For the linear scaling op-

timizer, the adaptive tolerance criteria (see Section 2.3) of 0.02

for the gradient and 0.05 for the energy change have been

applied. See also Table 1.
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to the reactants is ‘‘difficult’’ because the starting

geometry for the latter was near a saddle point

in the potential energy landscape, and the po-

tential energy surface is flat near the reactants.

Table 1 demonstrates that different algorithms
and options lead to different optimized energies

even for such a small system, and several criteria

need to be applied to determine which one

works best. The linear scaling optimizer with

adaptive tolerance for both gradient and energy

change is the method of choice considering

robustness, fast convergence to a small gradient

and to a low energy simultaneously, both in
terms of the number of energy/gradient evalua-

tions required and in terms of the number of

geometry steps. For the reasons mentioned

above, line search did not save optimization

cycles.

In order to test the performance of the different

geometry optimizers on larger systems, the geom-

etry of three silicon clusters consisting of up to

1051 atoms has been optimized (see Table 2). In

addition to the trends already observed in Fig. 1
and Table 1, also the percentage of CPU time

spent in the routines for geometry optimization is

negligible for the linear scaling optimizers whereas

it is significant for larger systems for the currently

implemented second-order optimizers (they were

the most time-consuming subroutines in these

calculations), despite the small number of DIIS

steps used for extrapolation (5 for the two smaller
clusters, 2 for the largest cluster). This shows that

the upper limit of sizes handled by these optimizers

is reached at around 1000 atoms, and the linear

scaling optimizer described in this article is needed

for these and larger systems.

Table 1

Geometry optimizationa of the Diels–Alder complex of ethylene and butadiene to the productsb (PS) and the reactantsc (RS) using the

Becke88 [20]/Perdew86 [21] (BP) exchange-correlation functional

Geometry Optimizer Criteria Energy Steps Steps (ene)

cgr;ad cen;ad wf geo wf geo

PS L-BFGS/TR 0.02 0.05 )40.016128 498 71 327 50

PS L-BFGS/LS 0.02 0.05 )40.016125 1035 125 296 40

PS L-BFGS/TR 0.01 – )40.016140 770 96 283 32

PS L-BFGS/TR – – )40.016077 507 62 375 31

PS NR/BFGS – – )40.015998 1435 135 n/r

PS DIIS/BFGS – – ()39.930444) >2500 >472 n/r

PS CGRAD – – ()40.015720) >2500 >403 n/r

RS L-BFGS/TR 0.02 0.05 )39.953912 1477 152 1084 109

RS L-BFGS/LS 0.02 0.05 )39.953562 1423 144 n/r

RS L-BFGS/TR 0.01 – )39.953848 1870 232 1591 155

RS L-BFGS/TR – – )39.953052 1266 206 n/r

RS NR/BFGS – – ()39.952271) >2500 >504 n/r

RS DIIS/BFGS – – ()39.930504) >2500 >261 n/r

RS CGRAD – – ()39.947667) >2500 >383 n/r

The final energy in atomic units is given for some geometry optimizers and wavefunction convergence criteria. For the optimization

algorithms, see Section 2.1. ‘‘L-BFGS/TR’’ and ‘‘L-BFGS/LS’’ denote the L-BFGS optimizer with trust radius and line search,

respectively. The regular convergence criterion for the wavefunction was 10�5 atomic units in all cases. Where given, the gradient (cgr;ad)
and energy (cen;ad) adaptive tolerance criteria have been applied, see Section 2.3. Also given are the number of single-point energy
calculations (columns ‘‘wf’’) and geometry steps (columns ‘‘geo’’) required to reach convergencea (columns ‘‘Steps’’), and the respective

numbers of steps required to reach a given value of the total energy. The energies to be reached were )40.016 atomic units for the ‘‘PS’’
optimizations and )39.9538 atomic units for the ‘‘RS’’ optimizations. [columns ‘‘Steps (ene)’’]. See also Fig. 1 and Table 3.
a The convergence criterion for the maximum component of the gradient on ions was 10�4 atomic units throughout.
b The optimization started at the AM1 TS of the reaction, the initial maximum component and norm of the energy gradient on ions

were 3.9� 10�2 and 1.3� 10�2 atomic units, respectively.
c The optimization started very near the BP TS. The initial maximum component and norm of the energy gradient on ions were

3.0� 10�3 and 1.1� 10�3 atomic units, respectively. Note that the small initial gradient is due to the closeness to the TS rather than to
the reactant state.
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3.2. Transition-state search

The practical feasibility of the P-RFO algo-

rithm [16] and the microiterative scheme for TS

search [11,12] has been shown in the literature.

Table 3 tests the suitability and performance of the

algorithm in DFT. Although the reaction core of

only four carbon atoms is very strongly coupled to
its environment, the microiterative TS search from

two different starting geometries converged to the
same geometry with one negative eigenvalue of the

Hessian. Note that the evaluation of the initial

Hessian alone would have required 96 geometry

steps if the core consisted of all atoms. For good

variational separation between core and environ-

ment, a very small gradient on the ions is required

(originally, one third of the convergence criteria of

the reaction core [11,12]). For the Diels–Alder re-

Table 2

Geometry optimization of large systems with the L-BFGS and the DIIS/BFGS optimizer

Size Optimizer Processes Energy Steps CPU time

wf geo

307 Si + 172 H L-BFGS/TR 64 )1297.8437 310 47 <0.3%

307 Si + 172 H DIIS/BFGS 52 )1297.8415 394 96 15.5%

513 Si + 252 H L-BFGS/TR 128 )2149.4113 100a 12a <0.3%

513 Si + 252 H DIIS/BFGS 128 )2149.3993 87 13 21.8%

747 Si + 304 H L-BFGS/TR 128 )3095.5003 1002 98 <0.1%

747 Si + 304 H DIIS/BFGS 128 )3095.3474 >1002b >92b 19.6%

Three silicon clusters have been optimized using the PBE gradient correction [22,23]. For the column labels, see Table 1. Also given is

the percentage of the total CPU time spent in geometry optimization routines for a given number of parallel processes on an IBM SP3.
a The L-BFGS optimizer required 61 energy evaluations and 7 geometry steps to obtain an energy below )2149.4 atomic units.
b The DIIS/BFGS optimization was stopped after the number of single-point energy and gradient calculations the L-BFGS opti-

mization took to reach convergence. The smallest maximum component and norm of the energy gradient on ions reached up to that

point were 2.8� 10�3 and 8.4� 10�4 atomic units, respectively.

Table 3

TS search of the Diels–Alder reaction between ethylene and butadiene using the BP exchange-correlation functional [20,21] from two

different starting conditions (‘‘Geometry’’)

Geometry Criteria Barrier Steps

Fmax;env cen;ad wf geoa coreb

TS1c 5� 10�4 – 0.023423 344 43 12

TS1c 10� 10�4 – Wrong mode – –

TS1c 5� 10�4 0.05 0.023418 350 44 12

TS1c 10� 10�4 0.05 0.023480 491 33 16

TS2d 5� 10�4 – 0.023486 571 78 13

TS2d 10� 10�4 – 0.023486 562 77 13

TS2d 5� 10�4 0.05 0.023471 589 77 13

TS2d 10� 10�4 0.05 0.023453 546 67 11

See Tables 1 and 2 for the column labels. The convergence criterion ‘‘env’’ denotes the maximum component of the gradient on the ions

of the environment until a step within the reaction core is done. The convergence criterion for the maximum component of the gradient

on ions in the reaction core was 5� 10�4 atomic units.
aNumber of P-RFO, L-BFGS, and finite-difference Hessian steps.
bNumber of P-RFO steps alone.
c This initial geometry has a maximum component of the gradient on the ions of the environment: 4.8� 10�4 atomic units. The finite-

difference Hessian has been calculated already.
d This initial geometry has a maximum component of the gradient on the ions of the environment: 1.6� 10�3 atomic units. The finite-

difference Hessian is not yet available.
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action in Table 3, the relatively loose criterion of

5� 10�4 atomic units was sufficient.

4. Conclusions and outlook

This article presented methods for geometry

optimization and TS search suitable for molecular

and nanoscale systems treated with DFT codes

using plane waves and direct wavefunction opti-

mization. These procedures can run without user

intervention for the entire optimization, can be

resumed without loss of information, and the costs
of the geometry optimization itself are negligible

compared with those of the evaluation of energy

and forces for all system sizes considered. Among

the reasons for the good performance and ro-

bustness, an adequate trust radius algorithm and

the ability to reject geometry steps have been

identified to be the most important. Additionally,

it was possible to improve the stability and per-
formance of the geometry optimizers by dynami-

cally adjusting the convergence criteria for the

electronic wavefunction based on the progress of

the geometry optimization and by restoring the

guess of the electronic wavefunction to be opti-

mized from a step earlier than the last step under

given circumstances.

The test systems contained 4 to 1051 atoms. The
geometry optimizers presented in this paper will be

particularly useful for very large systems such as

macromolecular and nanoscale systems, including

systems described by a QM/MM Hamiltonian for

which the computational costs of the conventional

algorithms are prohibitive.
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